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Introduction

The Optimization Problem

An optimization problem has the general form

minimize f0(x)

subject to fi (x) ≤ bi , i = 1, . . . ,m.

We say that

x = (x1, . . . , xn) are the optimization variables,

f0 : Rn → R is the objective function,

fi : Rn → R, i = 1, . . . ,m are the inequality constraint functions.
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Introduction

The Optimization Problem

We say that a vector x∗ is optimal if it minimizes the objective function
f0(x) and satisfies the constraint functions fi , i = 1, . . . ,m.
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Introduction Unconstrained Optimization

Unconstrained Problem

We minimize an objective function which is a function of real variables. We
place no constraints on these values. The general problem can be written

min{f (x) : x ∈ Rn}
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Introduction Motivating Example

A Motivating Example — MLE

Suppose we observe data {xi , yi}ni=1, where our yi is count data. Then we
can think of Yi as following a Poisson distribution. I.e. we can form the
Poisson regression model:

Yi ∼ Poisson(µi ), µi = E(Yi ), log(µi ) = β0 + β1xi

We want to estimate the parameters β = (β0, β1) by maximum likelihood
estimation.
We can write down the conditional probability and thus the log likelihood:

p(y | x) =
n∏

i=1

eyiβx i e−e
βx i /yi !

`(β) =
n∑

i=1

yiβx i − eβx i − log(yi !)

We cannot write down a closed form for β! We require numerical
optimization methods.
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Introduction Intuition

Intuition for Optimization Algorithms

The optimization algorithms we present are iterative processes that allow
us to find the minimum of a function. Often we can only promise a local
minimum.

At time step k , we have current iterate xk and we want to find the next
iterate xk+1 such that f (xk) > f (xk+1).

Our algorithms have the general form

xk+1 = xk − αkd k ,

where d k is a descent direction.
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Introduction Intuition

Intuition for Optimization Algorithms

First-order methods: Use the first derivative.

Steepest descent is a very popular first-order method with the following
update step:

xk+1 = xk − αk∇f (xk).

Suppose we want to minimize the function f (x) = x4 − 2x3 − 8x2.
At time step k we have xk = −3. How do we choose xk+1?
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Introduction Intuition

Intuition for Optimization Algorithms

xk+1 = xk − αk∇f (xk)
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Introduction Intuition

Intuition for Optimization Algorithms

Second-order methods: Use the first derivative and the Hessian (the
matrix of second derivatives).

Newton’s method is a very popular second-order method with the
following update step:

xk+1 = xk − (∇2f (xk))−1∇f (xk).

Key intuition

Newton’s method minimizes the second-order approximation of the
function.

Suppose we want to minimize the function f (x) = x4 − 2x3 − 8x2.
At time step k we have xk = −3. How do we choose xk+1?
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Unconstrained Optimization Algorithms

Second-Order Methods — Approximating a function

Theorem (quadratic approximation theorem)

Let f : U → R be a twice continuously differentiable function over an open
set U ⊂ Rn, and let x ∈ U, r > 0 satisfy B(x , r) ⊆ U. Then for any
y ∈ B(x , r)

f (y) = f (x) +∇f (x)T (y − x) +
1

2
(y − x)T∇2f (x)(y − x) + o(‖y − x‖2).
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Unconstrained Optimization Algorithms

Second-Order Methods

A second-order method uses evaluations of the Hessian.

Newton’s method is an iterative method in which each update is
chosen to minimize the quadratic approximation of the objective
function around xk .

Quadratic approximation of f (x) around xk :

Q(x) = f (xk)+∇f (xk)T (x−xk)+
1

2
(x−xk)T∇2f (xk)(x−xk) xk+1 = argmin

x∈Rn
Q(x)

∇f (xk) +∇2f (xk)(xk+1 − xk) = 0,

xk+1 = xk − (∇2f (xk))−1∇f (xk)
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Unconstrained Optimization Algorithms

Comments on Newton’s Method

Newton’s method converges quadratically.

Pure Newton’s method may diverge if our initialization is bad. We can
avoid this by modifying the Hessian at each step to make it positive (semi)
definite if it is not, and ensuring that the step size is chosen such that the
function decreases.

It may be difficult to evaluate the Hessian, particularly for
high-dimensional objective functions.
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Unconstrained Optimization Algorithms

Quasi-Newton Methods

Quasi-Newton methods use an approximation of the second derivative.

Avoids evaluating the Hessian ∇2f (x) at each iteration — an error-prone
and expensive process.

Attains a superlinear rate of convergence, and lower computational cost
(O(n2) as opposed to O(n3) in Newton’s method).
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Unconstrained Optimization Algorithms

The BFGS Method

Recall the second-order Taylor series approximation around xk ,

f (xk + d ) = f (xk) +∇f (xk)Td +
1

2
dT∇2f (xk)d + o(‖d‖2)

We will define the approximation of the objective function at xk as

mk(d ) = f (xk) +∇f (xk)Td +
1

2
dTBkd

Bk is an n × n symmetric positive definite matrix that will be updated at
every iteration.
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Unconstrained Optimization Algorithms

The BFGS Method

The minimizer of the convex quadratic mk(d ), which we can write as

d = B−1k ∇f (xk),

is the search direction. Hence, the new iterate is

xk+1 = xk − αkB−1k ∇f (xk),

where αk is our step size.

This iterative update is the same as Newton’s method except it uses the
approximate Hessian.
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Unconstrained Optimization Algorithms

Instead of recomputing Bk at every iteration, we iteratively update it by
accounting for the curvature measured in the most recent step.

Suppose we generate a new iterate xk+1, then we construct the new
quadratic model

mk+1(d ) = f (xk+1) +∇f (xk+1)Td + dTBk+1d
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Unconstrained Optimization Algorithms

In order to determine the new Bk+1 we place restrictions on mk+1(d ).

We require that the gradient of mk+1 be equal to the gradient of f
evaluated at the two most recent iterates xk and xk+1.

1 ∇mk+1(0) = ∇f (xk+1),

2 ∇mk+1(−αkd k) = ∇f (xk+1) − αkBk+1d k = ∇f (xk).

Rearranging 2 gives us

αkBk+1d k = ∇f (xk+1)−∇f (xk)
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Unconstrained Optimization Algorithms

We introduce the following notation:

sk = xk+1 − xk (= αkd k),

yk = ∇f (xk+1)−∇f (xk),

Recall from the last slide

αkBk+1d k = ∇f (xk+1)−∇f (xk),

then we can write the secant equation

Bk+1sk = yk .
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Unconstrained Optimization Algorithms

Secant equation:
Bk+1sk = yk

BFGS update:
xk+1 = xk + αkB−1k ∇f (xk)

BFGS places restrictions on the inverse of the Hessian approximation

Hk = B−1k

Secant equation
Hk+1yk = sk
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Unconstrained Optimization Algorithms

Secant equation:
Hk+1yk = sk

We require that the symmetric positive definite matrix Hk+1 maps yk to
sk . This is only possible if yk and sk satisfy the curvature condition

yT
k sk > 0.

If f is strongly convex then the curvature condition is satisfied for any xk

and xk+1.

Remark

For non-convex f we must impose this restriction explicitly. We impose
the Wolfe or strong Wolfe conditions on the line search. The Wolfe
conditions ensure that we take a step which produces a sufficient decrease
in f , and doesn’t take an unacceptably small step.
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Unconstrained Optimization Algorithms

The secant equation places n restrictions on Hk+1.

As Hk+1 is symmetric positive definite, it has n(n + 1)/2 parameters.

Hk+1 has infinitely many solutions.
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Unconstrained Optimization Algorithms

In order to determine Hk+1 uniquely, we impose the condition that among
all symmetric matrices that satisfy the secant equation, Hk+1 is in some
sense closest to Hk .

We form the optimization problem
where sk and yk satisfy the curvature condition and Hk is symmetric and
positive definite.

Different matrix norms result in different quasi-Newton methods. Hence
the following choices are arbitrary but they provide a nice solution and
produce the BFGS algorithm update.
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Unconstrained Optimization Algorithms

A norm that provides an easy solution to the optimization problem which
is scale-invariant is the weighted Frobenius norm

‖A‖W ≡ ‖W 1/2AW 1/2‖F ,

where ‖ · ‖F is defined by ‖A‖2F =
∑n

i=1

∑n
j=1 a

2
ij .

The matrix W can be chosen to be any matrix satisfying Wsk = yk . One
possible W is the inverse of the average Hessian. That is,

W = Ḡ−1k , where Ḡ k =

∫ 1

0
∇2f (xk + tαkd k)dt
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Unconstrained Optimization Algorithms

Using the Taylor series approximation of ∇f (xk+1) around xk

∇f (xk+1) = ∇f (xk) +

∫ 1

0
∇2f (xk + tαkd k)αkd kdt,

we can show that Ḡ k satisfies the secant equations:

yk = ∇f (xk+1)−∇f (xk) = Ḡ kαkd k = Ḡ ksk ,
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Unconstrained Optimization Algorithms

The unique solution to this optimization problem is given by

Hk+1 = (I − ρksky
T
k )Hk(I − ρkyks

T
k ) + ρksks

T
k ,

where ρk = 1
yT
k sk

.
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Unconstrained Optimization Algorithms

[H] Given a starting point x0, convergence tolerance ε > 0, and inverse
Hessian approximation H0 k ← 0 ‖∇f (xk)‖ > ε Compute the search
direction

d k = −Hk∇f (xk)

Set xk+1 = xk + αkd k , where αk is computed via a line search procedure
to satisfy the Wolfe conditions Define sk = xk+1 − xk and
yk = ∇f (xk+1)−∇f (xk) Compute Hk+1 using
Hk+1 = (I − ρkskyT

k )Hk(I − ρkyksTk ) + ρksksTk k ← k + 1
The BFGS Algorithm
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Unconstrained Optimization Algorithms

Thank you!
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Appendix — Optimizing the Step Size

For general functions, BFGS converges globally if the Wolfe conditions are
imposed on the line search.

Definition (Wolfe Conditions)

A step length αk satisfies the Wolfe conditions in direction d k if the
following inequalities hold:

1 f (xk + αkd k) ≤ f (xk) + c1αk∇f (xk)Td k ,

2 ∇f (xk + αkd k)Td k ≥ c2∇f (xk)Td k ,

where 0 < c1 < c2 < 1. We may refer to the first condition as the
sufficient decrease 1, and the second condition as the curvature condition.
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Appendix — Initializing the Hessian

We often set H0 = βI , for some scalar β.

A common heuristic is to initially set H0 = I , then set H0 ←
yT
k sk

yT
k yk

I .

Heuristic reasoning: Makes the ‘size’ of H0 similar to (∇2f (x0))−1.
Assuming the average Hessian is positive definite, we can write

Ḡ k = Ḡ 1/2
k Ḡ 1/2

k . Then using yk = Ḡ ksk ,

yT
k sk

yT
k yk

=
(Ḡ 1/2

k sk)T Ḡ 1/2
k sk

(Ḡ 1/2
k sk)T Ḡ kḠ

1/2
k sk

=
zT
k zk

zT
k Ḡ kzk
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Appendix — Solving the Minimization Problem

We have the optimization problem

minimize H ‖H −Hk‖,
subject to H = HT ,

Hyk = sk ,

where sk and yk satisfy the curvature condition and Hk is symmetric and
positive definite.

Jake Spiteri Optimization and the BFGS Algorithm December 06, 2019 29 / 29



Appendix — Solving the Minimization Problem

We introduce the following notation:

Ĥ = W 1/2HW 1/2

Ĥk = W 1/2HkW 1/2

ŝk = W 1/2sk
ŷk = W−1/2yk

Then we have the minimization problem

minimize Ĥ ‖Ĥ − Ĥk‖F ,

subject to Ĥŷk = ŷk(= ŝk),

Note that ŷk is an eigenvector of Ĥ .
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Appendix — Solving the Minimization Problem

We introduce a new orthonormal bases: U = [u | u⊥]. Let u be the
normalized eigenvector ŷk .
Multiplications by orthogonal matrices preserve length, and the Frobenius
norm is unitary invariant. Hence

‖Ĥ−Ĥk‖F = ‖UT ĤkU−UT ĤU‖F =

∥∥∥∥[∗ ∗
∗ uT

⊥Ĥku⊥

]
−
[

1 0

0 uT
⊥Ĥu⊥

]∥∥∥∥
F

We can only modify the matrix on the right, and in this the only element
we can change is the lower right element. In order to minimize the norm
we must set the lower left elements of the matrices to be equal.

uT
⊥Ĥu⊥ = uT

⊥Ĥku⊥
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Appendix — Solving the Minimization Problem

uT
⊥Ĥu⊥ = uT

⊥Ĥku⊥

This gives the optimal solution

Ĥ = U
[

1 0

0 uT
⊥Ĥku⊥

]
UT

=
[
u u⊥

] [1 0

0 uT
⊥Ĥku⊥

] [
uT

uT
⊥

]
= uuT + u⊥uT

⊥Ĥku⊥uT
⊥

= uuT + (I − uuT )Ĥk(I − uuT )
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