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Summary of Independent Component Analysis

Problem:

We want to recover a latent random vector x = (x1, . . . , xm)>

from observations y = (y1, . . . , ym) which are unknown linear
functions of x .

The components of x are modeled as mutually independent.

An observation y is modeled as

y = Ax ,

where A is an m ×m matrix of parameters.

Given N observations of y , we want to estimate A and thus
recover the latent vector x .
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Seeking Independence

Our problem can be reduced to finding W := A−1 such that the
components of x̂ = Ŵ y are independent.

We have previously performed ICA by maximizing the negentropy,
which is a measure of non-Gaussianity.

To achieve independence we can estimate parameters by
minimizing a contrast function, where a contrast function is
defined to always be nonnegative and equal to zero if and only if
variables x1 and x2 are independent.
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Kernel ICA

Kernel ICA uses kernel-based measures of statistical dependence.

Definition (F-correlation)

For a reproducing-kernel Hilbert space (RKHS) F , the
F-correlation between the random variables f1(x1) and f2(x2),
where f1, f2 ∈ F is:

ρF = max
f1,f2∈F

corr (f1 (x1) , f2 (x2)) ,

= max
f1,f2∈F

cov (f1 (x1) , f2 (x2))

(var f1 (x1))1/2 (var f2 (x2))1/2
.

Clearly if x1 and x2 are independent, then the F-correlation is zero.
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Contrast function

We will use the following contrast function based on the
F-correlation

IρF = −1

2
log(1− ρF )
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Reproducing Property

Restricting the maximization in the F-correlation to the RKHS
allows us to exploit the reproducing property :

f (x) = 〈Φ(x), f 〉, ∀f ∈ F ,

where Φ : X → F is a map from our input space into the RKHS.
This allows us to write

ρF = max
f1,f2∈F

corr (f1 (x1) , f2 (x2))

= max
f1,f2∈F

corr (〈Φ (x1) , f1〉 , 〈Φ (x2) , f2〉)

That is, the F-correlation is the maximum correlation between
one-dimensional linear projections of Φ (x1) ,Φ (x2). This is the
definition of the first canonical correlation between Φ (x1), and
Φ (x2).
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Problem Setup

To use the F-correlation as a contrast function for ICA, we
need to compute canonical correlations in our feature space.

We need a kernelization of the canonical correlation. This will
allow us to work with an empirical sample and work in the
feature space.
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Kernelization of CCA

Let {x11 , . . . , xN1 } and {x12 , . . . , xN2 } denote sets of N empirical
observations of x1 and x2. The observations generate Gram
matrices L1,L2, where {Li}r ,k := K (x ri , x

k
j ). We then compute the

centered Gram matrices K 1,K 2. Our kernelized CCA problem
becomes

ρ̂F (K 1,K 2) = max
α1,α2∈RN

corr
(
α>1 x1,α

>
2 x2

)
= max

α1,α2∈RN

α>1 K 1K 2α2(
α>1 K 2

1α1

)1/2 (
α>2 K 2

2α2

)1/2
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Kernelization of CCA

Based on the previous slide, we can perform a kernelized version of
CCA by solving the generalized eigenvalue problem:(

0 K 1K 2

K 2K 1 0

)(
α1

α2

)
= ρ

(
K 2

1 0
0 K 2

2

)(
α1

α2

)
The F-correlation is defined as the first (largest) eigenvalue of the
kernelized CCA problem.

We can rewrite this as(
K 2

1 K 1K 2

K 2K 1 K 2
2

)(
α1

α2

)
= λ

(
K 2

1 0
0 K 2

2

)(
α1

α2

)
,

where λ = 1 + ρ. We can easily generalize this result to more than
two variables. We will write this as

Kα = λDα
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Outline of the kernel ICA algorithm
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