Kernel Independent Component Analysis

Jake Spiteri

University of Bristol

2020

University of Bristol

・ロト ・回ト ・ヨト

Jake Spiteri Kernel Independent Component Analysis Summary of ICA

Kernel ICA 000 000

Table of Contents

1 Summary of ICA

2 Kernel ICA

- *F*-correlation
- Estimating the *F*-correlation
 - Kernelization of CCA
- Outline of the algorithm

University of Bristol

イロト イヨト イヨト

Jake Spiteri

Kernel Independent Component Analysis

University of Bristol

Summary of Independent Component Analysis

Problem:

- We want to recover a latent random vector x = (x₁,...,x_m)[⊤] from observations y = (y₁,...,y_m) which are unknown linear functions of x.
- The components of *x* are modeled as mutually independent.
- An observation **y** is modeled as

$$y = Ax$$
,

Image: A matched block of the second seco

where **A** is an $m \times m$ matrix of parameters.

Given N observations of y, we want to estimate A and thus recover the latent vector x.

Kernel ICA 000 000

Seeking Independence

Our problem can be reduced to finding $\boldsymbol{W} := \boldsymbol{A}^{-1}$ such that the components of $\hat{\boldsymbol{x}} = \hat{\boldsymbol{W}}\boldsymbol{y}$ are *independent*.

We have previously performed ICA by maximizing the negentropy, which is a measure of non-Gaussianity.

To achieve independence we can estimate parameters by minimizing a *contrast function*, where a contrast function is defined to always be nonnegative and equal to zero if and only if variables x_1 and x_2 are independent.

Image: A math a math

Kernel ICA

Kernel ICA uses kernel-based measures of statistical dependence.

Definition (\mathcal{F} -correlation)

For a reproducing-kernel Hilbert space (RKHS) \mathcal{F} , the \mathcal{F} -correlation between the random variables $f_1(x_1)$ and $f_2(x_2)$, where $f_1, f_2 \in \mathcal{F}$ is:

$$\begin{split} \rho_{\mathcal{F}} &= \max_{f_1, f_2 \in \mathcal{F}} \operatorname{corr} \left(f_1 \left(x_1 \right), f_2 \left(x_2 \right) \right), \\ &= \max_{f_1, f_2 \in \mathcal{F}} \frac{\operatorname{cov} \left(f_1 \left(x_1 \right), f_2 \left(x_2 \right) \right)}{\left(\operatorname{var} f_1 \left(x_1 \right) \right)^{1/2} \left(\operatorname{var} f_2 \left(x_2 \right) \right)^{1/2}}. \end{split}$$

Clearly if x_1 and x_2 are independent, then the \mathcal{F} -correlation is zero.

Jake Spiteri

Kernel Independent Component Analysis

University of Bristol

Contrast function

We will use the following contrast function based on the $\ensuremath{\mathcal{F}}\xspace$ -correlation

$$I_{
ho_{\mathcal{F}}} = -rac{1}{2}\log(1-
ho_{\mathcal{F}})$$

University of Bristol

Kernel Independent Component Analysis

Jake Spiteri

Reproducing Property

Restricting the maximization in the \mathcal{F} -correlation to the RKHS allows us to exploit the *reproducing property*:

$$f(x) = \langle \Phi(x), f \rangle, \quad \forall f \in \mathcal{F},$$

where $\Phi:\mathcal{X}\to\mathcal{F}$ is a map from our input space into the RKHS. This allows us to write

$$\begin{split} \rho_{\mathcal{F}} &= \max_{f_1, f_2 \in \mathcal{F}} \operatorname{corr} \left(f_1 \left(x_1 \right), f_2 \left(x_2 \right) \right) \\ &= \max_{f_1, f_2 \in \mathcal{F}} \operatorname{corr} \left(\left\langle \Phi \left(x_1 \right), f_1 \right\rangle, \left\langle \Phi \left(x_2 \right), f_2 \right\rangle \right) \end{split}$$

That is, the \mathcal{F} -correlation is the maximum correlation between one-dimensional linear projections of $\Phi(x_1), \Phi(x_2)$. This is the definition of the first *canonical correlation* between $\Phi(x_1)$, and $\Phi(x_2)$.

Kernel ICA

Problem Setup

- To use the *F*-correlation as a contrast function for ICA, we need to compute canonical correlations in our feature space.
- We need a kernelization of the canonical correlation. This will allow us to work with an empirical sample and work in the feature space.

Image: A math a math

Kernel ICA ○○○ ○●○

Kernelization of CCA

Let $\{x_1^1, \ldots, x_1^N\}$ and $\{x_2^1, \ldots, x_2^N\}$ denote sets of N empirical observations of x_1 and x_2 . The observations generate Gram matrices L_1, L_2 , where $\{L_i\}_{r,k} := K(x_i^r, x_j^k)$. We then compute the centered Gram matrices K_1, K_2 . Our kernelized CCA problem becomes

$$egin{aligned} \hat{
ho}_{\mathcal{F}}\left(oldsymbol{\mathcal{K}}_{1},oldsymbol{\mathcal{K}}_{2}
ight) &= \max_{oldsymbol{lpha}_{1},oldsymbol{lpha}_{2}\in\mathbb{R}^{N}} \operatorname{corr}\left(oldsymbol{lpha}_{1}^{ op}oldsymbol{x}_{1},oldsymbol{lpha}_{2}^{ op}oldsymbol{x}_{2}
ight) \ &= \max_{oldsymbol{lpha}_{1},oldsymbol{lpha}_{2}\in\mathbb{R}^{N}} rac{oldsymbol{lpha}_{1}^{ op}oldsymbol{\mathcal{K}}_{1}oldsymbol{\kappa}_{1},oldsymbol{lpha}_{2}^{ op}oldsymbol{x}_{2}}{\left(oldsymbol{lpha}_{1}^{ op}oldsymbol{\mathcal{K}}_{1}^{2}oldsymbol{lpha}_{1}
ight)^{1/2}\left(oldsymbol{lpha}_{2}^{ op}oldsymbol{\mathcal{K}}_{2}^{2}oldsymbol{lpha}_{2}
ight)^{1/2}} \end{aligned}$$

メロト メロト メヨト メ

Kernel Independent Component Analysis

Jake Spiteri

University of Bristol

Kernelization of CCA

Based on the previous slide, we can perform a kernelized version of CCA by solving the generalized eigenvalue problem:

$$\begin{pmatrix} \mathbf{0} & \mathbf{K}_1 \mathbf{K}_2 \\ \mathbf{K}_2 \mathbf{K}_1 & \mathbf{0} \end{pmatrix} \begin{pmatrix} \mathbf{\alpha}_1 \\ \mathbf{\alpha}_2 \end{pmatrix} = \rho \begin{pmatrix} \mathbf{K}_1^2 & \mathbf{0} \\ \mathbf{0} & \mathbf{K}_2^2 \end{pmatrix} \begin{pmatrix} \mathbf{\alpha}_1 \\ \mathbf{\alpha}_2 \end{pmatrix}$$

The \mathcal{F} -correlation is defined as the first (largest) eigenvalue of the kernelized CCA problem.

Image: A math a math

Kernelization of CCA

Based on the previous slide, we can perform a kernelized version of CCA by solving the generalized eigenvalue problem:

$$\begin{pmatrix} \mathbf{0} & \mathbf{K}_1 \mathbf{K}_2 \\ \mathbf{K}_2 \mathbf{K}_1 & \mathbf{0} \end{pmatrix} \begin{pmatrix} \mathbf{\alpha}_1 \\ \mathbf{\alpha}_2 \end{pmatrix} = \rho \begin{pmatrix} \mathbf{K}_1^2 & \mathbf{0} \\ \mathbf{0} & \mathbf{K}_2^2 \end{pmatrix} \begin{pmatrix} \mathbf{\alpha}_1 \\ \mathbf{\alpha}_2 \end{pmatrix}$$

The \mathcal{F} -correlation is defined as the first (largest) eigenvalue of the kernelized CCA problem. We can rewrite this as

$$\begin{pmatrix} \mathbf{K}_1^2 & \mathbf{K}_1 \mathbf{K}_2 \\ \mathbf{K}_2 \mathbf{K}_1 & \mathbf{K}_2^2 \end{pmatrix} \begin{pmatrix} \mathbf{\alpha}_1 \\ \mathbf{\alpha}_2 \end{pmatrix} = \lambda \begin{pmatrix} \mathbf{K}_1^2 & \mathbf{0} \\ \mathbf{0} & \mathbf{K}_2^2 \end{pmatrix} \begin{pmatrix} \mathbf{\alpha}_1 \\ \mathbf{\alpha}_2 \end{pmatrix},$$

where $\lambda=1+\rho.$ We can easily generalize this result to more than two variables.

< D > < A > < B > <</p>

University of Bristol

Kernelization of CCA

Based on the previous slide, we can perform a kernelized version of CCA by solving the generalized eigenvalue problem:

$$\begin{pmatrix} \mathbf{0} & \mathbf{K}_1 \mathbf{K}_2 \\ \mathbf{K}_2 \mathbf{K}_1 & \mathbf{0} \end{pmatrix} \begin{pmatrix} \mathbf{\alpha}_1 \\ \mathbf{\alpha}_2 \end{pmatrix} = \rho \begin{pmatrix} \mathbf{K}_1^2 & \mathbf{0} \\ \mathbf{0} & \mathbf{K}_2^2 \end{pmatrix} \begin{pmatrix} \mathbf{\alpha}_1 \\ \mathbf{\alpha}_2 \end{pmatrix}$$

The \mathcal{F} -correlation is defined as the first (largest) eigenvalue of the kernelized CCA problem. We can rewrite this as

$$\begin{pmatrix} \mathbf{K}_1^2 & \mathbf{K}_1 \mathbf{K}_2 \\ \mathbf{K}_2 \mathbf{K}_1 & \mathbf{K}_2^2 \end{pmatrix} \begin{pmatrix} \mathbf{\alpha}_1 \\ \mathbf{\alpha}_2 \end{pmatrix} = \lambda \begin{pmatrix} \mathbf{K}_1^2 & \mathbf{0} \\ \mathbf{0} & \mathbf{K}_2^2 \end{pmatrix} \begin{pmatrix} \mathbf{\alpha}_1 \\ \mathbf{\alpha}_2 \end{pmatrix},$$

where $\lambda = 1 + \rho$. We can easily generalize this result to more than two variables. We will write this as

$$\mathcal{K}\alpha = \lambda \mathcal{D}\alpha$$

Image: A math a math

Jake Spiteri

Kernel Independent Component Analysis

Outline of the kernel ICA algorithm

Algorithm KERNELICA-KCCA

- **Input:** Data vectors y^1, y^2, \dots, y^N Kernel K(x, y)
 - 1. Whiten the data
 - 2. Minimize (with respect to W) the contrast function C(W) defined as:
 - a. Compute the centered Gram matrices K_1, K_2, \ldots, K_m of the estimated sources $\{x^1, x^2, \ldots, x^N\}$, where $x^i = Wy^i$
 - b. Define $\hat{\lambda}_{\mathcal{F}}^{\kappa}(K_1, \ldots, K_m)$ as the minimal eigenvalue of the generalized eigenvector equation $\mathcal{K}_{\kappa} \alpha = \lambda \mathcal{D}_{\kappa} \alpha$

イロト イロト イヨト イヨ

University of Bristol

c. Define $C(W) = \hat{I}_{\lambda_{\mathcal{F}}}(K_1, \dots, K_m) = -\frac{1}{2}\log \hat{\lambda}_{\mathcal{F}}^{\kappa}(K_1, \dots, K_m)$

Output: W

Jake Spiteri

Kernel Independent Component Analysis