
JAKE SPITERI 1 BASICS OF STATISTICAL LEARNING

1 Basics of Statistical Learning

1.1 Introduction

In order to provide rational decision making, we focus on four key aspects:

1. Precise predictions
2. Data-driven predictions
3. Cost conscious predictions
4. We must take into account the random nature of our data

Modern-day data science combines mathematics, data, risk-analysis, and statistics to meet the above
criteria. This statement is justified in the following subsections.

1.2 Linear Models for Regression

The aim of linear modelling is to predict the value of a continuous target variable y ∈ R, given a d-
dimensional vector of input variables x ∈ Rd. In practice we observe a dataset of pairs of inputs and
outputs D := {(xi, yi)}ni=1.

We aim to minimize the sum of squared errors
n∑
i=1

(yi − f(xi;w))2, where f(x; w) = 〈w1,x〉+ w0. Note

that in the following y is a n-dimensional row vector, w = [w1, w0] T is a (d + 1)-dimensional column
vector, and the data matrix X ∈ R(d+1)×n. We choose our model parameters wLS such that

wLS := argmin
w

n∑
i=1

(yi − f(xi;w))2

Minimizing the above function gives us wLS = (XX T)−1Xy T. The proof can be found in Appendix A.1.

The analytical solution for wLS relies upon the invertibility of XX T. In the case that n < d (we have more
parameters than observations), the matrix XX T does not have full rank and is therefore non-invertible.
This is shown in Appendix A.1.1.

Clearly least squares linear modelling is data-driven, and considers costs via the squared error. In order
to justify that least squares linear models take into account the random nature of our data, we deduce
wLS by creating a model from a probabilistic point of view.

We begin by expressing the randomness of our target variable y with a probability distribution. Given
x, we say that y|x ∼ N(f(x; w), σ2). This is for a single (x, y) pair. In practice, our dataset consists of
n observations. We further assume that (xi, yi) are independent and identically distributed (IID). With
this assumption, we have

P(y1, . . . , yn|x1, . . . ,xn; w, σ) =

n∏
i=1

P(yi|xi; w, σ)

The proof can be found in Appendix A.1.2.

Given this probabilistic model, we want to tune our parameters w and σ in a data-driven way. To do
this we use Maximum Likelihood Estimation (MLE). The underlying idea is as follows: A model
with parameters that assign a high probability to observing our data is more likely than a model with
parameters that assign a relatively low probability to observing our data.

For a model with parameters θ and observed data y, we define the likelihood to be L(θ) = P (y;θ)
We often choose to work with the log-likelihood l(θ) = log(L(θ)). The parameter which maximizes the
likelihood is θ̂ := argmax

θ
l(θ).

1

JAKE SPITERI 1 BASICS OF STATISTICAL LEARNING

Given our probability model of y given x, and a dataset D0 we can perform MLE to obtain wMLE :=

argmin
w

n∑
i=1

(yi − f(xi; w))2. This derivation can be found in Appendix A.1.3. We see that the parameter

choice determined from our probabilistic model, wMLE, is equal to the least squares parameter choice
wLS. Hence, LS considers the random nature of our data.

We can also compute the variance of the conditional distribution y|x, σ, by MLE. This gives σ2
MLE =

1
n [y − f(x; wMLE)]2. Thus the probabilistic view allows us to also determine the uncertainty of our
predictions, satisfying another criterion of rational decision making.

1.3 LS with Feature Transforms

Linear LS assumes that the relationship between y and x is linear, and so linear LS only fits straight
lines.

We can easily extend the current LS setup to include non-linear functions of our features. Let φ(x) : Rd → Rb
be a feature transform. For example, φ(x) := [x, x2, x3, . . . , xb] is a polynomial transform. In this case,

wLS := argmin
w

∑
i∈D0

(yi − g(xi; w))2, for g(x; w) := 〈w1,φ(x)〉+ w0,w := [w1, w0] T

The solution is wLS = (φ(X)φ(X) T)−1φ(X)y T. Similarly to before, φ(X) ∈ R(b+1)×n. When φ(X)
is a symmetric matrix (φ(X) = φ(X) T), wLS can be written wLS = φ(X)y T. This is shown in Ap-
pendix A.1.4.

It is worth noting that introducing complex feature transforms can increase the likelihood of overfitting.
This can be dealt with via regularization techniques. We may also encounter the curse of dimensionality.

1.4 Overfitting and the Curse of Dimensionality

Suppose φ(x) : Rd → Rb. That is, we have b parameters. The variable b is a measure of our model’s
complexity. Overfitting occurs when we increase our model’s complexity (represented by b in the above),
and it can no longer generalize to new data. This is a key concept in statistical decision making.

When training a model with a training set and test set, we notice:

1. As we increase the number of parameters in our model, the training error continues to decrease.
Our regression f(x; wLS) fits the training set better and better as b increases.

2. The testing error decreases and then increases again. Our regression f(x; wLS) does not gen-
eralize to the unseen test data when b is too large. This is known as the bias-variance tradeoff.

We require a method to efficiently select the number of parameters to use in our model. We could split
our data into training, validation, and test sets, and tune the number of parameters by minimizing the
validation error, but this may be an inefficient use of our data. To overcome this, we use cross-validation.

1.4.1 Cross-Validation

Cross-validation (CV) is a well-known model selection technique. It is best summarized as a series of
steps:

1. Split dataset D into k + 1 disjoint sets D0, . . . , Dk.
2. For i = 0 to k,

(a) Fit f
(i)
LS(b) on all subsets except Di for all b,

(b) Compute the error Err(Di, f
(i)
LS(b)), for all b.

3. Select the b that minimizes
∑

i Err(i)/(k + 1).

2

JAKE SPITERI 1 BASICS OF STATISTICAL LEARNING

In the above, k is a parameter to be chosen. It can be as high as n− 1, which is known as leave-one-out
CV. The computational cost of CV is very high and its effectiveness relies upon the IID assumptions of
our dataset. In some cases such as time series, randomly splitting the data may not ensure that the IID
assumption holds.

1.4.2 Regularization

We often want to utilize the flexibility of f(x; w) offered by a large value of b. In this case, we use
regularization.

wLS−R := argmin
w

∑
i∈D

[yi − f(xi; w)]2 +
λ

2
w T w

The second term (the regularization term) discourages w from taking large values. This version uses the
L2-norm which shrinks parameters towards zero. We could use another norm such as the L1-norm which
performs parameter selection by making some parameter values equal to zero.

The value of λ is a choice. As λ increases, overfitting decreases and at large values we may underfit
the data, as our model loses its flexibility.

For the regularization term λw T w, we have wLS-R := (φ(X)φ(X) T +λI)−1φ(X)y T. Clearly as λ
increases, the values of wLS-R become smaller, corresponding to the fitted curve f(x; wLS-R) becoming
flatter and smoother. As above, we may also use cross-validation to choose λ.

We can motivate the use of regularization with three different approaches:

1. Regularized least squares (Frequentist) — Similar to previous sections, we minimize the loss func-
tion.

2. Maximum A Posteriori (semi-Bayesian) — We find the parameters w which maximize the posterior
density p(w|D). This only gives a point estimate for w.

3. Fully probabilistic approach (full Bayesian) — We make predictions by calculating p(ŷ|x, D) as a
marginalized probability.

Details of the three different approaches and proof of the equivalence of their parameters can be found
in Appendix A.1.5.

1.4.3 The Curse of Dimensionality

Suppose we have one input variable, x ∈ R. We may use feature transforms to expand our set of features,
φ(x) ∈ Rb. We now have b parameters in our model.

What if x ∈ Rd? We will require φ(x) := [h(x(1)), . . . ,h(x(d))], h(t) := [t1, t2, . . . , tb] ∈ Rb. φ(x) ∈
Rdb. This includes polynomials of each feature up to order b. If we include pairwise cross-dimensional

polynomials we have φ(x) ∈ Rdb+(d2). Consider including terms all the way up to d-plets. We know that(
d
1

)
+
(
d
2

)
+
(
d
3

)
+ · · ·+

(
d
d

)
= 2d. That is, the number of parameters can grow exponentially with

dimensionality d. Thus in order to maintain invertibility of XX T (we require n > d) we require that
n grows exponentially with d. This problem is known as the curse of dimensionality. It prevents
us from solving high-dimensional problems.

1.5 Binary Classification

Some problems involve making a discrete decision. For example, given a patient’s medical data such as
body weight, height, and age, we may want to determine whether this person should be a patient or not.
We have the following setup:

1. Input: x ∈ Rd.

3

JAKE SPITERI 1 BASICS OF STATISTICAL LEARNING

2. Output: a class label, y ∈ {+1,−1}.
3. Task: Given x make a prediction y whilst minimizing errors/cost.

When working with a regression problem, we want to learn a function f(x) that predicts y. However,
with a classification problem we want to find a decision boundary f(x) = 0, which splits the space of
x into two areas corresponding to the two class labels.

1.5.1 Bayes’ Optimal Classifier

When predicting class labels, we want to minimize misclassification. That is, we want to minimize

P (x is FP or FN|f) =

∫
R+

p(x, y = “− 1”)dx +

∫
R−

p(x, y = “ + 1”)dx.

This is minimized when f(x) = p(x, y = “ + 1”)− p(x, y = “− 1”). A proof is given in Appendix A.2.1.
This f(x) is referred to as Bayes’ optimal classifier. This is only an idealized optimal classifier as in
practice we do not have access to p(x, y), we only have access to data from each distribution.

1.5.2 Risk Minimization

We have not accounted for the fact that making wrong decisions may have different costs. We can encode
the cost of making errors for different classes into a loss matrix. To make an effective decision we must
minimize the expected loss of making a wrong decision.

Suppose the true output is y and the decision is denoted y0, then the optimal decision is given by

argmin
y0

Ep(y|x)[L(y, y0)|x].

The value of L is determined by the loss matrix. Once again, we do not have p(y|x) but we can infer it
from p(y|x, D). Thus, we look for argminy0 Ep(y|x,D)[L(y, y0)|x].

In classification tasks there are two approaches to obtaining p(y|x, D):

1. A straightforward (discriminative) approach — We infer p(y|x, D) using D.
2. An indirect (generative) approach — p(y|x, D) ∝ p(x|y,D)p(y).

(a) Infer p(x|y,D) using D.
(b) p(y) can be determined by the proportion of pos/neg. samples.

The inference of p(y|x, D), and p(x|y,D) can be done via MLE, MAP, etc. The discriminative approach
only differentiates predictions of y. The generative approach also allows us to ‘generate’ new inputs x
given an output y. However, learning p(x|y) with a high-dimensional x can be very hard. Due to this, if
your task is only classification then the discriminative approach is best.

We can also reject decision making when max{p(y = “ + 1”|x), p(y = “ − 1”|x)} is lower than a
specified threshold.

1.5.3 Connection to Regression

The output of a regression is a continuous variable, so we cannot use a loss matrix. As seen in Section 1.2,
we also minimize the expected loss as ŷ := argminy0 Ep(y|x)[L(y, y0)|x] = Ep(y|x)[y].

It is unlikely we will have p(y|x), but we can infer p(y|x, D) via MLE, MAP, etc. Thus ŷ ≈ Ep(y|x,D)[y].
This corresponds to looking for the mean of the inferred predictive distribution.

4

JAKE SPITERI 2 PROBABILITY THEORY

2 Probability Theory

2.1 Multivariate Normal Distribution

Definition (Multivariate Normal Distribution). A random vector X ∈ Rn is said to have a multivariate
normal distribution with mean µ ∈ Rn and covariance matrix Σ ∈ Rn×n if its probability density
function is given by

p(x;µ,Σ) =
1

(2π)n/2|Σ|1/2
exp

(
−1

2
(x− µ) T Σ−1(x− µ)

)
.

This is written as X ∼ N(µ,Σ).

MVN random variables are multi-dimensional generalizations of univariate normal distributions. We can
see this using:

• Σ−1 = UDU T, the eigendecomposition of Σ−1.
• y = U T(x− µ), a coordinate transform of the x variables.
• Using the above, p(y) =

∏
iNy(0, di), where 1/di is the ith diagonal element of D

Hence, under a coordinate transform, a multivariate normal random vector X ∈ Rn is the product of n
univariate normal random variables. This is a useful fact for generating MVN r.v’s using normal r.v’s.

Definition (Mahalanobis Distance). An observation x ∈ Rn from a distribution with mean µ and
covariance matrix Σ has Mahalanobis distance

D(x) =

√
(x− µ) T Σ−1(x− µ)

The Mahalanobis distance measures the distance between x and µ, rotated by U. This distance is
chi-squared distributed for any x which is MVN distributed. That is, for x ∈ Rd, the Mahalanobis
distance DM (x) ∼ χ2

d. Hence, this distance can be used to define a confidence region for our x.

Moments of MVNs:

• E[x] = µ
• E[xx T] = µTµ+ Σ

2.1.1 Partitioned MVNs

Given a partitioned MVN distribution such as

xa,xb ∼ Nxa,xb

([
µa
µb

]
,

[
Σaa Σab

Σba Σbb

])
,

we want to be able to write down the conditional distribution xa|xb, and the marginal distribution of xa.

We can show that:

1. p(xa|xb) = Nxa(µ−Θ−1
aa Θabxb) + Θ−1

aa Θabµb,Θ
−1
aa)

2. p(xa) = Nxa(µa,Σaa)

The second part above tells us that the marginal of a joint MVN has mean and variance that is the same
as the mean and variance of the partitioned MVN.

2.1.2 Gaussian Linear Model

For a Gaussian linear model we have:

5

JAKE SPITERI 2 PROBABILITY THEORY

Prior: p(x) = Nx(µ,Λ−1)
Likelihood: p(y,x) = Ny(Ax + b,L−1)
Marginal: p(y) = Ny(Aµ+ b,L−1 + AΛ−1A T)
Posterior: p(x|y) = Nx(Σ{A T L(y − b) + Λµ},Σ), where Σ = (Λ + A T LA)−1

2.1.3 Likelihood and MLE for MVN

Given a dataset D := {xi}ni=1, the likelihood function with a MVN density can be written as:

L(µ,Σ, D) =
∑
i=1

logNXi(µ,Σ)

= const− n

2
log |Σ| − tr(X̄X̄ T Σ−1)

2

where X̄ = [(x1 − µ), . . . , (xn − µ)] ∈ Rd×n is the ’centralized’ dataset.

To get the MLEs we compute max
µ,Σ

L(µ,Σ, D) = max
Σ

max
µ

L(µ,Σ, D). We get:

• µMLE := 1
n

∑n
i=1 xi, then

• ΣMLE := X̄MLEX̄MLE
T

6

JAKE SPITERI 3 LINEAR METHODS FOR REGRESSION

3 Linear Methods for Regression

3.1 Bias-Variance Decomposition

We saw in Section 1.4 that as our model f(x; wLS) becomes more complex and flexible, it becomes
unable to generalize to an unobserved dataset. In this section we produce a mathematical explanation of
overfitting. We will explain overfitting via a frequentist analysis called the bias-variance tradeoff.

We can easily compute the training error of wLS on a training set D, E(D,wLS), however we are not
interested in the error over a specific dataset D. We are interested in the expected error over all possible
datasets. To compute this we take the expectation with respect to the dataset D:

ED[E(D,wLS)] = ED

[∑
i∈D

[yi − f(xi; wLS)]2

]

=

n∑
i=1

ED
[
[yi − f(xi; wLS)]2|xi

]︸ ︷︷ ︸
Expected loss

ED
[
[yi − fLS]2|xi

]
= Eε

[
[yi − fLS]2|xi

]
= varε[ε]︸ ︷︷ ︸

irreducible error

+ [g(xi)− Eε[fLS|xi]]2︸ ︷︷ ︸
bias2

+ varε[fLS|xi]︸ ︷︷ ︸
variance

We notice the following:

• The first term measures the randomness of the data generating process.
• The second term measures how close our prediction is to the true data. As our model’s complexity

increases the bias shrinks towards zero.
• The third term measures the variance of our estimator. As our model’s complexity increases and it

becomes more ‘wiggly’, the variance increases.

The bias-variance tradeoff :

• As we increase b, fLS becomes more complex and can fit a more complex underlying function, so
the bias decreases.
• As we increase b, the flexibility afforded to fLS allows it to fit to the noise in our dataset, so the

variance increases.

We must balance the bias and variance in order to minimize the expected loss. This provides us with the
minimum expected error.

Definition (In-sample Error). The collective error over the entire dataset.

In-sample error =
1

n

n∑
i=1

Eε[(y − fLS)2|xi]

The in-sample error considers the average error given if we were able to repeatedly resample y for every
bbxi in our dataset. In practice we do not know the latent generating function g(x), nor do we know the
true distribution of ε. This makes it impossible to get new samples of y over our existing xi. Hence, we
use the out-sample error.

7

JAKE SPITERI 3 LINEAR METHODS FOR REGRESSION

Definition (Out-sample Error).

Out-sample error = ExEε[(y − fLS)2|x] = Ep(y,x)[(y − fLS)2]

This is the error over the entire distribution of x.

If we have a set of unseen datapoints D1 := {(y′i, x′i)}
n′

i=1,if D and D1 are IID then by the law of large
numbers we have

1

n′

∑
(y′,x′)∈D1

(y′ − fLS(x′))2 → Ep(y,x)[(y − fLS)2].

This justifies the use of E(D1,wLS) (the testing error) to evaluate the predictions given by fLS.

In approximating the out-sample error via the testing error, we can assess the degree of overfitting of our
model. This requires us to reserve some data for testing, which may be considered a ‘waste’ of data. CV
may help us avoid this loss of information but it has a large cost. We may also not be able to compute
the out-sample error as our dataset is not IID (e.g. time-series data).

3.2 Feature Transforms and Kernel Methods

3.2.1 Linear Basis Expansions

In Section 1.3 we looked at feature transformations such as the polynomial transform φ(x) := [x, x2, . . . , xb].
For a periodic response y we may consider feature transforms such as the trigonometric transform

φ(x) := [1, sin(x), cos(x), sin(2x), cos(2x), . . . , sin(bx), cos(bx)] ∈ R2b+1.

Idea: It is very unlikely that our latent data generating mechanism g(x) is linear in x. We need to
expand the space spanned by our feature variables to provide the estimator f(x; w) with more flexibility.

g(x) ≈ f(x; w) = 〈w,φ(x)〉 =
∑
i

w(i)φ(i)(x)

This is called a linear basis expansion of x — we are expanding the space spanned by our input
variables. The φ(i) are called basis functions.

Some choices of basis functions include:

• The polynomial basis: φ(i)(x) := [1, x, x2, . . . , xb],
• Non-linear transformations of single inputs: φ(i)(x) := log(xj) or φ(i)(x) :=

√
xj for some xj ∈ x,

• The radial basis function (RBF): φ(i)(x) := exp
(
−‖x−xi‖2

σ2

)
, where

– σ > 0 is called the bandwidth and is determined before fitting. A common heuristic is to set
σ to be the median of all pairwise distances of x in the dataset.

– xi are called the RBF centroids and are randomly chosen from x in the dataset
– If g(x) has a wide support, f(x; w) must be supported almost everywhere. The number of

RBFs we need to cover a space grows exponentially with the space’s dimension. Hence, we
require b = O(cd). Here we encounter the curse of dimensionality.

3.2.2 Kernel Methods

Motivation: In the above, φ(x) : Rd → Rs(b) transforms an input x to a feature space. f(x; w) is an
inner product in this feature space. By increasing b we can increase the dimension of the feature space,
and thus increase the flexibility of our estimator f . By using kernel methods we can expand the feature
space to be infinitely dimensional, greatly improving the flexibility of f .

8

JAKE SPITERI 3 LINEAR METHODS FOR REGRESSION

When we use kernel methods, we must define an inner product / kernel function k(·, ·). We can then
write the prediction function as

f(x; wLS−R) := k(K + λI)−1y T,

where k(i) = k(x,xi) = 〈φ(x),φ(xi)〉, k ∈ Rn. Ki,j = k(xi,xj) = 〈φ(xi),φ(xj)〉.

Note: φ(x) only appears in the inner product k(·, ·). Hence, even if we cannot write down φ(x) explicitly
we can still compute f(x; wLS−R). There are many choices of k that correspond to inner products of
powerful and potentially infinite dimensional feature transforms φ(x).

If an explicit φ(x) can be derived from k we say that k induces φ(x).

Choices of k:

• Linear kernel function: k(xi,xj) := 〈xi,xj〉. Implicit feature transform: φ(x) = x.
• Polynomial kernel function (degree b): k(xi,xj) := (〈xi,xj〉 + 1)b. Implicit feature transform:
φ(x) = [1,x, . . . ,xb].

• The radial basis kernel (RBF kernel): k(xi,xj) := exp
(
−‖xi−xi‖2

σ2

)
. The feature transform φ(x)

induced by k is infinitely dimensional.

Our choice of k may depend on the domain/task, and the type of data we have access to. The RBF
kernel is a good suggestion for x ∈ Rd.

Computational cost: The cost of computing K is O(n2), and the cost of computing (K + λI)−1 is
O(n3). Note that these costs do not depend on b. These costs are of course demanding for a large n.

3.3 Probabilistic Model Selection

Motivation: When choosing a model we want to minimize the expected squared loss. This is not a
simple procedure, as we cannot generate new datasets easily. We could instead minimize the out-sample
(testing) error, but this may not be optimal (non IID data, waste of data, etc.). To avoid this problem,
we consider model selection from a probabilistic point of view.

Suppose we have a set of models M = {m1, . . . ,mK}. We define the model prior p(m) and by Bayes’
rule we have p(m|D) ∝ p(D|m)p(m). This expresses the preference of models given D. In order to
make a prediction we marginalize over all models in M:

p(ŷ|D) =
∑
m∈M

p(ŷ|m,D)p(m|D)

This is a weighted sum of the predictions produced by different models. This contrasts greatly to the
frequentist approach, for which

m̂ := argmin
m

n∑
i=1

ED{[y − f(xi; w,m)]2|xi}

A key takeaway is that: Frequentists minimize, and Bayesians marginalize.

In probabilistic model selection, we select the most probable model given by p(m|D) in order to approx-
imate the p(ŷ|D) given above. We need to compute p(m|D). By Bayes’ rule we have

p(m|D) ∝ p(D|m)︸ ︷︷ ︸
model evidence

p(m)︸ ︷︷ ︸
prior

We can rewrite the model evidence as p(D|m) =
∫
p(D|w,m)p(w|m)dw, where the vector w parametrizes

the model m. We select the model m which maximizes this quantity.

9

JAKE SPITERI 3 LINEAR METHODS FOR REGRESSION

3.3.1 Model evidence

In the following we introduce assumptions which allow us analyze the properties of the model evidence,
and the properties of models which maximize this quantity.

We make the following assumptions:

• p(w|D,m) plateaus at wMAP. (Note that p(w|D,m) ∝ p(D|w,m)p(w|m)),
• The prior is flat p(w|m) = 1

∆prior .

Then we can write p(D|m) =
∫
p(D|w,m)p(w|m)dw ≈ p(D|wMAP,m) · ∆posterior

∆prior . Clearly, for a model

with b parameters log p(D|m) ≈ log p(D|wMAP,m) + b log ∆posterior
∆prior .

We assume that the posterior is sharper than the prior (this is the case most of the time), ∆posterior
∆prior < 1,

and thus the second term in log p(D|m) is negative. Recall that we want to maximize log p(D|m).

Key take away: In maximizing log p(D|m), we see that:

• Models with a wider posterior are preferred. Models which fit the dataset too well give us less
confidence.
• We prefer models with a lower value of b. Models with high complexity are penalized.

The model evidence prefers a model that maximizes p(D|wMAP,m), whilst balancing the model com-
plexity b, and the variance of the posterior.

3.3.2 Tuning hyperparameters

When implementing a model there are often hyperparameters which we tune in order to minimize the
expected squared error. With the probabilistic approach we use marginalized likelihood maximiza-
tion.

Once again, we want to calculate the predictive distribution

p(ŷ|D) =

∫
p(ŷ|D,α)p(α|D)dα

=

∫ ∫
p(ŷ|D,w, α)p(w|D,α)p(α|D)dwdα

This integral with respect to α may be intractable and so we make an assumption that will simplify the
problem. We assume that the distribution p(α|D) is ‘pointy’ at α̂. Then p(ŷ|D) ≈

∫
p(ŷ|D,w, α̂)p(w|D, α̂)dw.

We need to find the α̂ at which p(α|D) is maximized. We see that

p(α|D) ∝ p(D|α)p(α) =

∫
p(D|w, α)p(w|α)p(α)dw.

In order to maximize this, we assume that the prior p(α) is flat, and simply choose

α̂ := argmax
α

∫
p(D|w, α)p(w|α)dw

We see that we tune our hyperparameters by finding the values which maximize the model evidence.

10

JAKE SPITERI 4 LINEAR METHODS FOR CLASSIFICATION

4 Linear Methods for Classification

4.1 Multi-Class Classification

Recall from Section 1.5 the problem proposed in binary classification: We have an input {xi}ni=1 and
output y ∈ {−1,+1}. To solve this classification problem we find a decision boundary f(x) = 0. If
f(x) ≥ 0 we predict +1, if f(x) ≤ 0 we predict −1. This has a very clear geometric interpretation. The
space spanned by our data is split into two regions R+ and R−.

The multi-class classification problem occurs when our target variable y ∈ {1, . . . ,K}. In this case
we cannot use a single decision boundary f(x) to predict y.

• We estimate K functions {fk(x; wk)}Kk=1.

• given an input x we predict k̂ if fk̂(x; wk) > fj(x; wj), ∀j.

Our functions fk no longer have a geometric interpretation, but they do have a probabilistic interpretation.

4.1.1 Least Square Classifier

For binary classification:

• wLS := argminw

∑
i∈D[yi − f(xi; w)]2, where yi ∈ {−1,+1}.

• We predict ŷ := sign(f(x; wLS)).

Note: We can also use feature transforms φ for f (polynomial, trigonometric, RBF, etc.). In this case,
f(x; w) := 〈w,φ(x)〉. This means that even if our data is not separable in the original space (i.e. if
classes’ respective convex hulls are non-disjoint), we can expand the feature space such that it becomes
separable. Problem: The square loss imposed by a LS classifier does not make sense in classification
tasks. Outliers which are far from the decision boundary have too much influence and can shift the
boundary. LS classification also lacks a probabilistic interpretation.

4.1.2 Fisher Discriminant Analysis

We can think of the inner product 〈w,x〉 as embedding x onto a one-directional line along the direction
w. Fisher Discriminant Analysis seeks to find a w such that observations within the same class are close,
and observations in different classes are maximally separated. This is best understood via an illustration.
Our embedding is w T x. The embedded center for class k is µ̂ := 1

nk

∑
i,yi=k

w T xi. Then the within-class

scatterness of class k is sw,k =
∑

i,yi=k
(w T xi−µ̂k)2. The embedded dataset center is µ̂ := 1

n

∑n
i=1 w T xi.

The between-class scatterness can then be defined as sb,k := nk(µ̂k − µ)2. We maximize between-class
scatterness, and minimize within-class scatterness, i.e. maxw

∑
k sb,k/

∑
k sw,k. Note that FDA does not

learn a decision boundary.

4.2 Probabilistic Classifiers

We want to formulate the classification problem under a probabilistic framework. This will allow us to
develop new classifiers justified from a probabilistic approach.

We aim to minimize the expected loss: ŷ := argminy0 Ep(y|x)[L(y, y0) | x]. In order to compute this we
need p(y | x). Similar to the regression problem in Section 1.2, we have two options:

• Discriminative: Infer p(y | x) directly.
• Generative: Infer p(y | x) ∝ p(x | y)p(y). (Infer p(x | y)).

11

JAKE SPITERI 4 LINEAR METHODS FOR CLASSIFICATION

4.2.1 Generative Classifiers

To infer p(x | y), we need to specify a model for our x. In doing this we will place quite stringent
assumptions on our class density p(x | y).

Multivariate Normal Distribution — for continuous data.

If x is continuous, MVN is a natural choice for the conditional distribution of x|y. We model x|y =
k; w ∼ Nx(µk,Σk). We shall assume that our data xi, yi are IID for all i, and that our classes share
covariance matrix Σ. Then we have likelihood

p(D | w) =
∏
i∈D

p(xi, yi | w) =
∏
i∈D

p(xi | yi; w)p(yi) =
∏
i∈D

Nx(µyi ,Σ)p(yi)

We can then compute the maximum likelihood estimates: µ̂1,...,K , Σ̂ := argmaxµ1,...,K ,Σ

∑
i∈D logNx(µyi ,Σ)p(yi).

To compute this we

1. Plug in estimates for p(yi). We use nk
n for class k.

2. Compute the MLE for µ. µ̂ := 1
nk

∑
i∈D,yi=k xi.

3. Plug in µ̂ to compute Σ̂. Σ̂ :=
∑

k=1,...,K

nk

n

1

nk

∑
i∈D,yi=k

(xi − µ̂k)(xi − µ̂k) T

︸ ︷︷ ︸
MLE of the covariance of individual classes

.

When using a shared covariance matrix in the MVN model, the decision boundary is piecewise-linear.
In order to make a prediction, we predict ŷ := argmaxy p(y | x; ŵ) ∝ p(x | y; ŵ)p(y). The decision
boundary is then {x | p(y = k | x; ŵ) = p(y = k′ | x; ŵ), ∀k 6= k′} .

If we assume that each class k has its own covariance matrix Σk. Then the decision boundary is no
longer linear.

Näıve Bayes — for discrete data.

Suppose we have a discrete input variable x := [x(1), . . . , x(d)]. Once again we are interested in specifying
p(x | y). To do this we make the näıve assumption of conditional independence. Then we can write
p(x | y = k) =

∏
i∈D p(xi, | y = k), where yi ∈ {1, . . . ,K}. Hopefully we can then easily estimate p(xy | y)

and p(y). Given an observation x0, we can then make a prediction ŷ := argmaxy p(x = x0 | y)p(y). Note
that we could also make this näıve assumption and formulate the prediction under a MLE framework.

4.2.2 Discriminative Classifiers

In this case our task is to directly infer p(y | x). We will avoid placing assumptions on p(x | y).

Logistic Regression
We see that when y ∈ {−1,+1}, we can use Bayes rule and the assumption that p(x | y)p(y) > 0 ∀x, y
to write

p(y | x) =
1

1 + p(x|y=−1)p(y=−1)
p(x|y=1)p(y=1)

Hence our problem is reduced to learning models for the density ratio p(x|y=−1)
p(x|y=1) .

Note that we are placing less restrictions on our model, as assumptions on p(x | y) imply assumptions on
p(x|y=−1)
p(x|y=1) . However, the converse does not hold.

We model the log ratio log p(x|y=−1)p(y=−1)
p(x|y=1)p(y=1) as f(x; w). Given this model, we can write

p(y = 1 | x,w) =
1

1 + exp(f(x; w))
.

12

JAKE SPITERI 4 LINEAR METHODS FOR CLASSIFICATION

We will use the typical f(x; w) = 〈x,w〉 + w0. The model for p(y | x; w) := σ(f(x; w) is a linear
function of our covariates wrapped in a (potentially) non-linear transform. This concept of modelling an
outcome via plugging a linear function of covariates into a non-linear activation/link function is known
as generalized linear regression.

It is easy to see that p(y = −1 | x; w) = 1
1+exp(−f(x;w)) . Thus we can write p(y | x; w) = σ(f(x; w) · y).

We have likelihood p(D | x) =
∏
i∈D p(yi | xi; w). This is the same as the regression task. Then we

can compute the maximum likelihood estimate! We have wMLE = argmaxw log
∏
i∈D p(yi | xi; w) =

argmaxw

∑
i∈D log σ(f(x; w)y). Note: Logistic regression is far less influenced by outliers, relative to

the least squares classifier.

Adaptations:

• We can use feature transforms on x to achieve non-linear classifiers.
• We can place priors on our parameters w. Then wMAP = argmaxw

∑
i∈D log σ(f(x; w)y)+log p(w).

• We can use the full probabilistic approach.

Multi-class logistic regression:

We can easily extend binary logistic regression to multi-class logistic regression. We have p(y = k | x) =
p(x|y=k)p(y=k)∑
k′ p(x|y=k′)p(y=k′) . Then we model the log ratio log p(x|y=k)p(y=k)

p(x|y=k′)p(y=k′) as f(x; wk) − f(x; wk′). We simply

estimate w via MLE, use a softmax activation function, and predict ŷ = argmaxy p(y | x; wMLE)

4.3 Support Vector Machines

Support Vector Machines (SVM) allow us to find optimal separating hyperplanes when our data is
nonseperable. SVMs provide more reliable decision boundaries than methods such as the perceptron
classifier.

Problem: When using methods such as the perceptron classifier, we may find that our classifier performs
well on the training data but does not generalize to unseen data. This occurs when our decision boundary
is close to our training data and thus if we were to gather more data, some data points may cross the
decision boundary due to the data’s variability.

Solution: If our decision boundary is defined by f(x; w) = 0, we aim to satisfy the following conditions:

1. ∀i, yi = +, f(xi; w) ≥ 0.
2. ∀i, yi = −, f(xi; w) ≤ 0.
3. The error margin of f(x; w) is as thick as possible.

For f(x; w) = 〈w′,x〉 + w0, the thickness of the margin is 1
‖w′‖ . It is important to note that in many

cases, our data is not linearly separable and so we must allow our classifier f to make errors. For a point
xi within the margin we define the distance between the margin and the point to be εi. We call this
setup the soft-margin classifier. Our optimization problem becomes:

Minimize ‖w′‖2, Subject to ∀i, yif(xi; w) + εi ≥ 1, εi ≥ 0

This is a constrained minimization problem. If our classifier f(x; w) is a linear model, then the soft-margin
classifier is a convex minimization problem. Hence, every local minimum is a global minimum.
To solve this constrained minimization problem, we use the Lagrangian Dual and the KKT conditions.

13

JAKE SPITERI 4 LINEAR METHODS FOR CLASSIFICATION

4.3.1 The Lagrange Dual and the KKT Conditions

Consider a constrained optimization problem of the form:

minimize f0(x) subject to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p,

with variable x ∈ Rn. Lagrangian duality allows us to take these constraints into account by augmenting
the objective function via a weighted sum of the constraint functions. This allows us to transform the
constrained problem to an unconstrained problem. We define the Lagrangian function to be

L(x,λ,ν) = f0(x) +

m∑
i=1

λifi(x) +

p∑
i=1

νihi(x),

where λ, ν are the Lagrange multiplier vectors which are also referred to as the dual variables. The
Lagrange dual function is the minimum value of the Lagrangian over x: l(λ,ν) = infx L(x,λ,ν). Note
that this is a concave function, even if the original problem is not convex. For each pair (λ, ν) the dual
function provides lower bounds on the optimal solution to the original problem. We may wonder what
the best lower bound on the optimal solution is. This produces the Lagrange dual optimization problem:

maximize g(λ,ν) subject to λi ≥ 0, i = 1, . . . ,m.

The original problem is often referred to as the primal problem. The dual problem is a convex optimization
problem as the objective function is concave and the constraints are convex. This holds whether the primal
problem is convex or not.

KKT optimal conditions:
Assume that the functions f0, . . . , fm, h1, . . . , hp are differentiable. Let x∗ and (λ∗,ν∗) be primal and
dual optimal points with zero duality gap. Since x∗ minimizes L(x,λ∗,ν∗), we have

∇f0(x∗) +

m∑
i=1

λ∗i∇fi(x∗) +

p∑
i=1

ν∗i∇hi(x∗) = 0,

fi(x
∗) ≤ 0, i = 1, . . . ,m

hi(x
∗) = 0, i = 1, . . . , p

λ∗i ≥ 0 i = 1, . . . ,m

λ∗i fi(x
∗) = 0, i = 1, . . . ,m

∇f0(x∗) +

m∑
i=1

λ∗i∇fi(x∗) +

p∑
i=1

ν∗i∇hi(x∗) = 0

these are the Karush-Kuhn-Tucker (KKT) conditions. These are necessary conditions, but if our opti-
mization is a convex one then they are sufficient conditions.

Forming the dual optimization problem for soft-margin SVM: The Lagrange dual is
l(λ) := minw′,ε ‖w′‖2 +

∑
i εi − λi[yi(〈w′,x〉 + w0) + εi − 1] − λ′iεi. Differentiating w.r.t w′ and ε gives

optimality conditions w′ =
∑

i λiyixi/2, λ+λ′ = 1, and
∑

i λiyi = 0. We can plug this w′ into l(λ). This

gives l(λ) = −λ̃T X T Xλ̃/4 + 〈λ,1〉, where X = [x1, . . . ,xn] ∈ Rd×n, and λ̃ := [λ1 · y1, . . . , λn · yn] T.
Our Lagrange dual optimization problem is then: maximize λ̃T X T Xλ̃/4 + 〈λ,1〉 subject to 0 < λi < 1,∑

i λiyi = 0. We can solve this for λ̂, which then gives us ŵ′. We can plug w′ into the Lagrange dual
problem and use the KKT conditions to obtain w0. Note that X only appears in X T X and so we can
use kernels! Also note that the dual optimization problem is quadratic in n, and is thus slow when n is
large.

14

JAKE SPITERI 5 PROBABILISTIC GRAPHICAL MODELS

5 Probabilistic Graphical Models

5.1 Independence of Random Variables

Let X and Y be random variables. If X is independent of Y , then:

• We can write X ⊥ Y ,
• Factorization: p(X,Y) = p(X)p(Y) ,
• P (X | Y) = P (X), and P (Y | X) = p(Y). (There is no direct information exchange between X

and Y).

Let X, Y , and Z be random variables. If X is independent of Y given Z, then:

• We can write X ⊥ Y | Z,
• Factorization: p(X,Y | Z) = p(X | Z)p(Y | Z) and p(X,Y | Z) ∝ g1(X,Z)g2(Y, Z),
• P (X | Y, Z) = P (X | Z), and P (Y | X) = p(Y | Z). (Y does not provide any information which

changes the probability of X given Z, and there is no direct information exchange between X and
Y).

Key take away: (Conditional) independence tells us how information is exchanged between random
variables.

• X ⊥ Y ⇐⇒ No information is exchanged between X and Y .
• X ⊥ Y | Z ⇐⇒ No information is directly exchanged between X and Y .

5.2 Markov Networks

5.2.1 Representing (Conditional) Independence with Graphs

Given a set of random variables, it will be cumbersome to list all of the (conditional) independencies. A
graphical representation provides an intuitive and efficient way to describe such dependencies.

Given a graph with vertex set V and edge set E, we define the graph to be G := (V,E). For random
variables X,Y, Z ⊆ V , we say that X and Y are conditionally independent given Z if X and Y are
completely ‘blocked’ by Z on the graph G. We see that X ⊥ Y | Z is represented by the graph G.

A B

C D

Figure 1: A graph.

Given the graph in Figure 1 we can immediately read off the (conditional) inde-
pendence encoded by the graph:

• D ⊥ A | C
• D ⊥ B | C
• D ⊥ A | C,B
• D ⊥ A,B | C
• D ⊥ B | C,A

Clearly, we can easily represent dependencies with a graph.

5.2.2 Representing Probability Distribution Factorization with
Graphs

Given a graph G := (V,E) we say that the probability distribution p(X) factorizes over G if

p(X) ∝
∏
c∈C

gc(X
(c)),

where C is the set of all cliques (fully connected subgraph) in G, and gc is a function defined on X(c)

which is the subset of X restricted on C.

15

JAKE SPITERI 5 PROBABILISTIC GRAPHICAL MODELS

Given the graph in Figure 1 we can write down the probability distribution factorization:

p(A,B,C,D) ∝ g1(A,B,C) · g2(C,D)

Equivalency of factorization and conditional independence over G:

• If p factorizes over G, then p satisfies all conditional dependence represented by G.
• If p satisfies all conditional independence represented by G, then p factorizes over G.

Definition (Markov Networks). A set of random variables X which use an undirected graph to represent
their conditional independence is called an undirected graphical model, or Markov network.

5.2.3 Gaussian Markov Networks

Let x ∈ Rd be multivariate Gaussian distributed, x ∼ N(0,Σ). Then

p(x) ∝ exp

(
−x(Σ)−1x T

2

)
,

∝ exp

(
−
∑

u,v x(u)Θ(u,v)x(v)

2

)
, where Θ := (Σ)−1,

∝
∏

u,v;Θ(u,v) 6=0

exp
(
−x(u)Θ(u,v)x(v)

)
,

∝
∏

u,v;Θ(u,v) 6=0

gu,v(x
(u),x(v)).

We see that p(x) factorizes over G! The graph G is defined by the adjacency matrix A which takes values

A(u,v) :=

{
0, if Θ(u,v) = 0

1, if Θ(u,v) 6= 0

Note that A is a symmetric matrix and hence G is an undirected graph. Given a graph G that encodes
the conditional independence of a Gaussian random variable, we can infer the sparsity of Θ using the
above definition of A. This means that if we know the dependencies of a set of random variables,
then we can easily write down a Gaussian model! We can take this one step further: if we do
not know the dependency relationships, we can infer them from data. Given a dataset D we can fit
Θ̂ using MLE. Θ̂ = argmaxΘ log p(D; Θ). The sparsity of Θ̂ produces a graph which then produces a
factorization of p(X). This graph and corresponding factorization tells us about the dependency of our
variables.

5.2.4 Graphical Lasso

When learning the dependencies between covariates using data, we will obtain many non-zero entries in Θ.
To avoid this we introduce a regularization method for graphical models. Given a dataset D := {xi}ni=1,
x ∈ Rd. We can construct the Gaussian likelihood p(D | Θ) =

∏
iNxi(0,Θ

−1). We proceed with MLE
with an additional L1 regularization term.

Θ̂ := argmax
Θ

log p(D | Θ) + λ‖Θ‖1 = argmin
Θ

tr(SΘ)− log det Θ + λ‖Θ‖1,

where S is the sample covariance, ‖Θ‖1 =
∑

i,j |Θ
(i,j)|. We can then construct a graph using the sparsity

of Θ.

16

JAKE SPITERI 5 PROBABILISTIC GRAPHICAL MODELS

5.2.5 Conditional Markov Networks

Often, we are interested in the conditional distribution. In regression and classification we are often
tasked with predicting a response variable Y given covariates X. We need to factorize the conditional
distribution over the graph G.

We say that a conditional distribution p(Y | X) factorizes over a graph G with nodes V = X ∪ Y , if

• P (Y | X) = 1
N(X)

∏
c∈C gc(Vc), where C := {c is a clique in G | Vc 6⊆ X},

• N(X) :=
∫ ∏

c∈C gc(Vc)dY .

N(X) is a normalizing constant normalizing the conditional distribution over the domain of the random
variable Y . By the definition of the set C, we see that p(Y | X) does not include factors defined on
subsets of the conditioning variable X.

Y

X(1) X(2) X(d)

Figure 2: A graph.

Example: Consider the graph given in Figure 1.

p(C | A,B,D) =
1

N(A,B,D)
g1(A,B,C) · g2(C,D)

N(C) =

∫
g1(A,B,C) · g2(C,D)dC

p(D | A,B,C) =
1

N(A,B,C)
g1(C,D)

N(A,B,C) =

∫
g1(C,D)dD = g1(C)

We can reconstruct logistic regression using the above formulation of conditional
probabilities.

5.2.6 Classification with Conditional Markov Networks

Suppose we have Y ∈ {−1, 1},X ∈ Rd, and a simple undirected Markov network as shown in Figure 2.
We are interested in the conditional distribution p(Y | X). Using the factorization rule specified above
we can write p(Y | X) = 1

N(X)

∏
i gi(Y,x

(i)), where N(X) =
∑

Y ∈{−1,1}
∏
i gi(Y,X

(i)). We can construct

a model of the conditional likelihood p(Y | X) by defining gi. Let gi(Y = y,X(i) = x(i);βi, β0) :=
exp(y(βi · x(i) + β0)). Then

p(y | x;β, β0) =
1

N(x)

∏
i

exp(y(β(i) · x(i) + β0))

=
1

N(x)
exp(y(〈β,x〉+ dβ0))

N(X;β, β0) =
∑

y∈{−1,1}

exp(y(〈β,x〉+ dβ0))

= exp(〈β,x〉+ dβ0) + exp(−〈β,x〉 − dβ0)

We can easily show that this is logistic regression as it was introduced previously! Simply consider
the case where y = 1. We see that

17

JAKE SPITERI 5 PROBABILISTIC GRAPHICAL MODELS

p(y = 1 | x;β, β0) =
exp(〈β,x〉+ dβ0)

exp(〈β,x〉+ dβ0) + exp(−〈β,x〉 − dβ0)

=
1

1 + exp(−〈β,x〉−dβ0)
exp(〈β,x〉+dβ0)

=
1

1 + exp(−2〈β,x〉 − 2dβ0)

=
1

1 + exp(f(x;β, β0))
,

where f(x;β, β0) = −〈2β,x〉−2dβ0. If we wanted to make these exactly equivalent we could set w = −2β
w0 = −2dβ0. Then f(x;β, β0) = 〈w,x〉+ w0 as in Section 4.2.2.

5.3 Bayesian Networks

Markov networks are undirected graphical models encoding the conditional independence of our random
variables X and the factorization or the probability distribution p(X). In this section we introduce an
approach which uses directed graphical models to do the same job. In some cases a directed graphical
model may better represent our random variables (X may depend on Y but Y may not depend on X).

A B

C D

Figure 3: A
DAG.

Y

X(1) X(2) X(d)

Figure 4: A
DAG.

We use a Directed Acyclic Graph (DAG) as the graphical representation. We have
graph G := (V,E), where V is the vertex set and E is the directed edge set. As the
name implies, G is a directed graph which is also acyclic. If there exists a directed edge
from A to B, then we say that A is a parent of B, and B is a child of A. We also say
that B is a descendant of A. Example: In Figure 3 we see that C is a child of D, and
D is the parent of C, we can also say that A is a descendant of D.

5.3.1 Representing Probability Distribution Factorization with a DAG

A DAG can be used to represent the factorization of a probability distribu-
tion. We say that the probability distribution p(X) factorizes over a DAG G if
p(X) =

∏
v∈V p(Xv | Xparent(Xv)). Example: For the DAG specified in Figure 3 we

see that
P (A,B,C,D) = P (A | B,C)p(B)p(C | B,D)p(D)

5.3.2 Representing Conditional Independence with a DAG

For a DAG G, we say that a random variable Xv is independent of Xnon-desc(Xv) given
Xparent(Xv). That is, Xv is conditionally independent of its non-descendants given its parents. Example:
For the DAG specified in Figure 3 we can easily see that A ⊥ D | C,D, and B ⊥ D.

Equivalency: Just as is the case with a Markov network, there is an equivalency between representing
conditional independence and the factorization of a probability distribution over a DAG.

Definition (Bayesian Network). A set of random variables X which use a DAG to represent their
conditional independence is called a directed graphical model, or Bayesian network.

5.3.3 Classification with Bayesian Networks

Suppose Y ∈ {−1, 1} and X ∈ Rd. We are interested in the conditional probability P (Y | X)), where the
probability distribution can be factorized over the DAG in Figure 4. Then we can immediately write

p(Y | X) =
p(X | Y)

p(X)p(Y)
=

∏
i p(X

(i) | Y)p(Y)

p(X)

This is how Näıve Bayes is derived!

18

JAKE SPITERI 6 ADVANCED TOPICS IN MACHINE LEARNING

6 Advanced Topics in Machine Learning

6.1 Calibration in Predictive Machine Learning

6.1.1 Calibrated Classification

Definition (Calibrated). Supposed we have f : X → SY with SY = {[s1, . . . , sK] |
∑K

j=1 sj = 1, sj ≥ 0}.
Denoting S = f(X) as the random variable of model predictions, f is said to be calibrated if and only if
∀s ∈ SY , ∀y ∈ Y , the following equality holds:

P (Y = j | S = [s1, . . . , sK]) = sj

Definition (Calibrated Quantile Regression). Suppose we have a pair of jointly distributed random
variables (X,Y) ∈ R2 and a quantile regression model g : X → [0, 1]. Denoting Gτ = g(X, τ) as the
random variable of the τ−quantile predictions, g is said to be quantile calibrated iff ∀τ ∈ [0, 1], the
following holds:

P (Y ≤ Gτ) = τ

6.1.2 Post-hoc calibration

Figure 5: Different post-hoc calibration
methods.

When a binary classifier is not calibrated, a calibrator g :
[0, 1] → [0, 1] can be applied to improve the level of calibra-
tion.

Some post-hoc approaches include:

• Empirical binning (binary)
• Isotonic regression (binary)
• Beta calibration (binary)
• Dirichlet calibration (multi-class)

Post-hoc quantile calibration: We could use a calibra-
tor C : [0, 1] → [0, 1] to improve our quantile calibration.
However, if a classifier is calibrated and the predicted prob-
ability is 0.5 then we can say the target is distributed as
Bernoulli(0.5). This does not apply to quantile calibration
as proposed above: If a regressor is quantile calibrated then
given a predicted mean 0 and standard deviation 1 then we cannot say that the target is distributed as
Gaussian(2, 1). To overcome this we use distribution calibration.

6.1.3 Distribution calibration

Definition (Distribution Calibrated). Suppose we have f : X → SY with SY = {s | s : Y → [0,∞),
∫
Y s(t)dt = 1}.

Denoting S = f(X) as the random variable of model predictions, f is said to be distribution-calibrated
if and only if ∀s ∈ SY ,∀y ⊆ Y , the following equality holds:

P (Y = y | S = s) = s(y).

We should note that being distribution calibrated is a sufficient condition for being quantile calibrated.
Models that are well calibrated on a distribution level provide improved uncertainty quantification on
the target variable.

Beta calibration: A parametric calibrator can be derived from the beta distribution:

β(a,b,m)(q) =
1

1 + e−(a ln q−b ln(1−q)+m)

19

JAKE SPITERI 6 ADVANCED TOPICS IN MACHINE LEARNING

Figure 6: Different forms of the Beta link.

The motivation for the beta calibrator is that it can provide a rich class of calibration maps which is not
offered by other approaches. Isotonic calibration is a very powerful non-parametric method but it often
overfits when we do not have enough data. Other methods such as calibration via a logistic curve may
be reasonably used for normally distributed scores, but they cannot learn the identity function and thus
can provide worse probability estimates if applied to an already calibrated classifier.

Distribution calibration is applicable to any conditional density estimator but we focus on a regression
setting. Below is the GP-Beta approach which combines multiple output Gaussian processes with beta
calibration, for the binary classification and distribution regression.

GP-Beta Model:
We use Beta calibration maps to transform CDFs of the distributions output by the regressor similar
to post-hoc calibration methods proposed above. We want ta model which maps any regression output
(µi, σi) to a set of Beta calibration parameters (ai, bi, ci). However for each (µi, σi) we only observe one
target value yi. To overcome this, we want to observed target values from other observations close to
(µi, σi). This motivated the use of a Gaussian Process: We learn a GP to predict the parameters a, b, c
of the Beta calibration map.

We assume there are three latent functions that are jointly distributed with respect to a multi-output
GP, corresponding to the parameters a, b, c of the Beta calibration:

(wa, wb, wc) ∼ GP (0, k,B),

where k is the kernel function on the regression output distributions, and B is a 3× 3 coregionalization
matrix modeling the covariance among the outputs. The GP-Beta model uses the univariate Gaussian
embedding with a RBF kernel:

Ki,j =
θ

|σi + σj + θ2|1/2
exp

(
− (µi − µj)2

2(σi + σj + θ2)

)

Given n training points (µ,σ) = ((µ1, σ1), . . . , (µn, σn)), a Gaussian likelihood on (w
(i)
a , w

(i)
b , w

(i)
c)ni=1 can

be written as:

p

wa

wb

wc

 | µ,σ
 = N

wa

wb

wc

 | 0,B⊗K

 ,

where K is the n× n matrix with elements i, j as described above; it is obtained by applying the kernel

function k on (µ,σ), ⊗ is the Kronecker product, and wa = [w
(1)
a , . . . , w

(n)
a].

We will write the above as p(w | µ.σ) = N(w | 0,C), where w = [w1
T, . . . ,wm

T] T,wi = [w
(i)
a , w

(i)
b , w

(i)
c] T.

20

JAKE SPITERI 6 ADVANCED TOPICS IN MACHINE LEARNING

For target values y = (y1, . . . , yn), we can plug in the Beta link:

p(y | µ,σ) =

∫
w

(
n∏
i=1

p(yi | wi, µi, σi)

)
p(w | µ,σ)dw

p(yi | wi, µi, σi) =
dβai,bi,ci(p(Y ≤ t | µi, σi))

dt

∣∣∣∣
t=yi

ai = eγ
−1
a w

(a)
i +δa

bi = eγ
−1
b w

(b)
i +δb

ci = γ−1
c w

(m)
i + δc

The exponential function is introduced to ensure the monotonicity of the calibrator, and the hyperpa-
rameters γ, δ are introduced to control the model behavior at the prior.

Inference for the GP-Beta model:
The p(y | µ,σ) specified above is analytically intractable due to the non-linearity of the link function,
and thus optimizing the hyperparameters of the Beta link will be very difficult. Given a test instance
(µ∗, σ∗), the density p(yi | wi, µi, σi) is also intractable. We may attempt to overcome these problems by
using MCMC, but this is too slow. We cannot use Laplace approximation as it is not compatible with
the multi-output GPs. We can use variational inference combined with a Monte-Carlo gradient:

ln p(y) ≥ Eq(u)[ln p(y | u)]−KL[q(u), N(u)]

≥ Eq(w)[ln p(y | w)]−KL[q(u), N(u)]

21

JAKE SPITERI A BASICS OF STATISTICAL LEARNING

A Basics of Statistical Learning

A.1 Linear regression by minimizing least squares

Proof that the minimizer of wLS := argminw

n∑
i=1

(yi − f(xi;w))2 is wLS = (fXX T)−1Xy T:

wLS = argmin
w

n∑
i=1

(yi − f(xi;w))2

= argmin
w

||y −w T X||2

= argmin
w

(y −w T X)(y −w T X) T

= argmin
w
{yy T−2w T Xy T +w T XX T w}

(1)

Differentiating with respect to w and setting equal to zero gives

0 = −2Xy T +2XX T wLS

wLS = (XX T)−1Xy T .
(2)

A.1.1 Least-squares solution may be invertible

Proof that if d > n then the matrix XX T is non-invertible.

rank(XX T) ≤ min(rank(X), rank(X T))

= rank(X)

≤ min(d, n)

= n

A.1.2 Simplification of the joint density

Under assumptions of normality of our errors, and IID data, we have that

P(y1, . . . , yn|x1, . . . ,xn; w, σ) =

n∏
i=1

P(yi|xi; w, σ)

To prove this, we first need to show that for A, B, C, D random variables, (A,B) ⊥⊥ (C, D) =⇒ A ⊥⊥
C. This is done as follows:

P (A,C) =

∫
P (A,B,C,D) dBdD

=

∫
P (A,B)P (C,D) dBdD, by independence of (A,B) and (C,D)

=

∫
P (A,B) dB

∫
P (C,D) dD

= P (A)P (B) , by properties of joint probability mass functions

Using the above, we can see that if (xi, yi) ⊥⊥ (xj , yj) for i 6= j, then

xi ⊥⊥ xj , i 6= j

yi ⊥⊥ xj , i 6= j

yi ⊥⊥ yj , i 6= j

(3)

22

JAKE SPITERI A BASICS OF STATISTICAL LEARNING

Using this, we see that

P(y1, . . . , yn|x1, . . . ,xn; w, σ) =
n∏
i=1

P(yi|x1, . . . ,xn; w, σ), using yi ⊥⊥ yj , i 6= j

=
n∏
i=1

P(yi|xi; w, σ), using yi ⊥⊥ xj , i 6= j

A.1.3 MLE of the probabilistic model

wMLE := argmax
w

log
n∏
i=1

P (yi|xi; w, σ)

= argmax
w

[
n∑
i=1

−(yi − f(xi; w))2

2σ2

]
− n log

√
2πσ2

= argmin
w

n∑
i=1

(yi − f(xi; w))2

A.1.4 Least squares solution with symmetric feature transform matrix

When we use feature transforms, the design matrix X is replaced by φ(X), and the least squares solution
is wLS = (φ(X)φ(X) T)−1φ(X)y T.

Proof that when φ(X) is a symmetric matrix, wLS = φ(X)y T:

wLS = (φ(X)φ(X) T)−1φ(X)y T

= φ(X)−Tφ(X)−1φ(X)y T, using (AB)−1 = B−1A−1

= φ(X)−T

= φ(X)−1y T, using φ(X) = φ(X)−T

A.1.5 Regularization

In this section we will derive an equation for the parameters which minimize the least squares loss function
with regularization. We will also prove its equivalence to parameter solutions derived via a semi-Bayesian
approach and Maximum A Posteriori, and a fully probabilistic approach.

Proof that if the regularization term is λw T w then wLS-R := (φ(X)φ(X) T +λI)−1φ(X)y T:

wLS-R := argmin
w

∑
i∈D

[yi − f(xi; w)]2 + λw T w

= argmin
w
{(y −w Tφ(X))(y −w Tφ(X)) T +λw T w}

= argmin
w
{yy T−2w Tφ(X)y T +w Tφ(X)φ(X) T w + λw T w}

Differentiating with respect to w and setting equal to zero gives

−2φ(X)y T +2φ(X)φ(X) T wLS-R + 2λwLS-R = 0

(φ(X)φ(X) T +λI)wLS-R = φ(X)y T

wLS-R = (φ(X)φ(X) T +λI)−1φ(X)y T

23

JAKE SPITERI A BASICS OF STATISTICAL LEARNING

We now consider a probabilistic view of the regression problem. We have an inverse problem. We assume
our data is generated by some latent, unobserved data generating mechanism. In regression we observe
yi and assume it is generated by yi = g(xi) + ε. Where ε is noise. We want to gain some knowledge about
g.

We want to infer the posterior probability distribution p(g|D). We do this using Bayes’ rule, and the
assumption that g can be represented as a parametric function f(x; w). Once we determine w, we also
know g. Thus, we seek to infer p(w|D).

p(w|D) =
p(D|w)p(w)

p(D)

=

∏
i∈D p(yi|xi,w, σ2)p(wi)

p(D)
,

where yi|xi,w ∼ N(f(xi; w), σ2) and wi ∼ N(0, σ2
w). Then to make a prediction we can find a w that

maximises this posterior density. This procedure is called Maximum A Posteriori (MAP).

wMAP := argmax
w

∏
i∈D

p(yi|xi,w, σ2)p(wi)

= argmax
w

∏
i∈D

exp

[
− 1

2σ2
(yi − f(xi; w))2

]
exp

[
− 1

2σ2
w

w2
i

]
= argmax

w
− 1

2σ2
(y − f(x; w))(y − f(x; w)) T− 1

2σ2
w

w T w

= argmin
w

(y − f(x; w))(y − f(x; w)) T +
1

2
w T w

In the last line we have used λ = 2σ2/σ2
w.

A.2 Binary Classification

A.2.1 Minimizing false positive and false negatives

Here we prove that the minimizer of P (x is FP or FN|f) =
∫
R+

p(x, y = “−1”)dx+
∫
R−

p(x, y = “+1”)dx.

is given by f(x) = p(x, y = “ + 1”)− p(x, y = “− 1”).

f(x) = argmin
f(x)

[∫
R+

p(x, y = “− 1”)dx +

∫
R−

p(x, y = “ + 1”)dx

]
= argmin

f(x)

[∫
p(x, y = “− 1”)1{f(x)≥0}dx +

∫
p(x, y = “ + 1”)1{f(x)≤0}dx

]
= argmin

f(x)

[∫
p(x, y = “− 1”)1{f(x)≥0}dx +

∫
p(x, y = “ + 1”)(1− 1{f(x)≥0})dx

]
= argmin

f(x)

[∫
(p(x, y = “− 1”)− p(x, y = “ + 1”))1{f(x)≥0}dx +

∫
p(x, y = “ + 1”)dx

]
= argmin

f(x)

[∫
(p(x, y = “− 1”)− p(x, y = “ + 1”))1{f(x)≥0}dx

]
= p(x, y = “ + 1”)− p(x, y = “− 1”)

24

	Basics of Statistical Learning
	Introduction
	Linear Models for Regression
	LS with Feature Transforms
	Overfitting and the Curse of Dimensionality
	Cross-Validation
	Regularization
	The Curse of Dimensionality

	Binary Classification
	Bayes' Optimal Classifier
	Risk Minimization
	Connection to Regression

	Probability Theory
	Multivariate Normal Distribution
	Partitioned MVNs
	Gaussian Linear Model
	Likelihood and MLE for MVN

	Linear Methods for Regression
	Bias-Variance Decomposition
	Feature Transforms and Kernel Methods
	Linear Basis Expansions
	Kernel Methods

	Probabilistic Model Selection
	Model evidence
	Tuning hyperparameters

	Linear Methods for Classification
	Multi-Class Classification
	Least Square Classifier
	Fisher Discriminant Analysis

	Probabilistic Classifiers
	Generative Classifiers
	Discriminative Classifiers

	Support Vector Machines
	The Lagrange Dual and the KKT Conditions

	Probabilistic Graphical Models
	Independence of Random Variables
	Markov Networks
	Representing (Conditional) Independence with Graphs
	Representing Probability Distribution Factorization with Graphs
	Gaussian Markov Networks
	Graphical Lasso
	Conditional Markov Networks
	Classification with Conditional Markov Networks

	Bayesian Networks
	Representing Probability Distribution Factorization with a DAG
	Representing Conditional Independence with a DAG
	Classification with Bayesian Networks

	Advanced Topics in Machine Learning
	Calibration in Predictive Machine Learning
	Calibrated Classification
	Post-hoc calibration
	Distribution calibration

	Basics of Statistical Learning
	Linear regression by minimizing least squares
	Least-squares solution may be invertible
	Simplification of the joint density
	MLE of the probabilistic model
	Least squares solution with symmetric feature transform matrix
	Regularization

	Binary Classification
	Minimizing false positive and false negatives

