[3]:

[9]:

[9]:

Report 8 - Parallel Python

May 31, 2020

1 Parallel Python

In this report we will look at performing parallel computation using the Python language. Having
covered an introduction to Python programming in Report 7, we extend the concepts introduced
to involve efficient parallel computation. In this report we mainly cover functional programming,
and thus in Part 1 we introduce the concept and use of functional programming.

1.1 Partl
1.1.1 Functional Programming

Functional programming is simply a style of programming, in which we treat functions as objects.
That is, we may choose to store functions as variables, pass them as inputs into other functions,
or store them in data structures (e.g. we may have a vector or matrix of functions). Adopting this
framework, we will focus on writing functions which can be ran in parallel over multiple cores;
writing functions which interact and share dependencies is the difficulty in developing a “team”
of operations that we distribute over nodes in a cluster or the cores of a processor.

As one might expect, functional programming is not the only way to achieve parallelism in
Python. Instead we may choose to implement shared-memory parallelism, or message passing.

1.1.2 Functions as Objects

In this section we will introduce some examples of functional programming in practice. We simply
define a function and then treat it as any other object — we store it as a variable, define other
variables as transformations of evaluations of our function/object, and provide the function as an
input to another function.
Let’s define a simple function. Our function will multiply two scalar inputs.
def mult(a, b):
""rSimple function which returns the multiplication of the inputs""”
return a * b

Below we test that the function works as expected.

multiply 1 and 2
mult(l, 2)

2

We can easily store evaluations of functions as variables.

[14]:

[9]:
[9]:

[10]:

[11]:
[11]:

[12]:
[12]:

[15]:

test = mult(1l, 2)
print(test)

The way this works is rather simple. When we define a variable such asa = 2, we are storing 2
in memory and then setting the object a to point to this piece of memory. Similarly, if we then set b
= a we are creating a new variable b which points to whatever a was pointing to. Thus, in writing
test = mult(1,2) we are evaluating the function mult(1,2), and mult points to the output of
the function. Then we are setting the new variable test to point to what mult is pointing to.

We may define a function which is a transformation of this function. We define another func-
tion which returns two times the multiple of the two scalar inputs.

: def mult_II(x, y):

return 2 * mult(x, y)
mult_II(2, 2)
8

We now define a function which takes another function as input. Specifically, this function will
return two times the evaluation of the given function.

def two_times(a, b, function):
return 2 * function(a, b)

We can test the function using the mult function defined previously.
two_times(2, 2, mult)

8

We can also define functions on-the-fly using lambdas! Below we use the two_times function
where the function provided as an input is a lambda function which adds the two inputs. Hence,
given inputs x and y the function should return 2(x +).

two_times(2, 2, lambda x, y: X + y)
8

1.1.3 Properties of a Function

As seen in Report 7, object such as integers and strings have properties attached to them which
we can access. If we set the variable a to be an integer (e.g. a = 2) we can access its properties via
a.__[TAB]. Functions also possess properties which are accessed in the same way. Below we look
at some examples of the properties belonging to functions.

print (mult.__name__)

print (mult.__doc__)

mult
Simple function which returns the multiplication of the inputs

1.1.4 Functions as Arguments

We can also supply functions as arguments to other functions. This approach is commonly used
in functional programming. Below is a simple example.

[14]: def call_function(func, argl, arg2):
Sitmple function which calls the first argument " func ™ with
arguments “argl’ and “argl’.

nimnn

return func(argl, arg2)

[16]: test = call_function(mult, 1, 2)
print(test)

The above function is self-explanatory — it simply calls the function provided as the first ar-
gument with the second and third arguments. This may not seem useful in this sense, but it is
common to write a function which calls another function within it. For example, suppose we are
writing a function to implement Gaussian process regression (GPR). In implementing GPR we
must specify the covariance function via a kernel function. Our choice of kernel function may im-
pact our results and thus should consider multiple different options. To avoid redefining our GPR
function to use a different kernel function for every experiment, we can simply define one GPR
function which takes a kernel function as input.

Nevertheless, let’s proceed by making our call_function function a little more useful.

[17]: def call_function(func, argl, arg2):
Simple function which calls the first argument ~func™ with
arguments “argl’ and ‘arg2 . Also provides some information on
the function being called.
print(f"Calling function {func.__name__} with arguments {argl} and {arg2}")
output = func(argl, arg2)
print (f"The output is {outputl}")

[18]: test = call_function(mult, 1, 2)

Calling function mult with arguments 1 and 2
The output is 2

1.1.5 Mapping Functions

We often want to apply a single function to an entire set of data. Below we look at using our mult
function to multiply two vectors element-wise. Of course we could simple reduce this into a single
number by summing our outputs (thus computing the inner product).
[23]: 'a = [2, 4, 6, 8, 10]
b [1, 3, 5, 7, 9]

[29]:

[49]:

simply store the output
output = []
for i,j in zip(a, b):

output .append (mult (i, j))
print (output)

[2, 12, 30, 56, 90]

reduce the output t.e. compute the inner product
output = 0
for i, j in zip(a, b):
output += mult(i, j)
print (output)

190

The above functions looped over pairs of numbers in the vectors a and b and applied the
function mult to these pairs of numbers. The first function simply appended the output of mult to
a list whereas the second function reduced the output to a single number by adding the output of

mult.
Mapping is very common in practice and thus Python offers an optimized implementation via

map.
Let’s write a simple function which compute the Gaussian/RBF kernel function for a set of

points. The Gaussian kernel function is given by

x—ul2
K(x,y) = exp <—H 27;/”) ,

where ¢ > 0 is a hyperparameter called the bandwidth or length-scale.

import math

def gaussian_kernel(x, y, gamma=1):

nimnn
Evaluates the gaussian kernel function for scalar inputs = and vy,
and bandwidth parameter gamma.

nmnn

return math.exp(-(x-y)**2/(2*gamma**2))

We can easily check that the above function works. If x = y then we expect the kernel fucntion
to be equal to 1. As the difference between x and y increases, the kernel function’s evaluation will

also decrease.

[44]: # should be 1

gaussian_kernel(1l, 1, 1)

[44]: 1.0
[45]: | # should be less than 1

gaussian_kernel(1, 0.5, 1)

[45]: 0.8824969025845955

[46]: # should be less than the previous ewvaluation
gaussian_kernel(l, 0.1, 1)

[46]: 0.6669768108584744

Let’s use Python’s built-in function map to perform the above test once again.
a= [1,1,1]
b= [1.0, 0.5, 0.1]

output = map(gaussian_kernel, a, b)
print (output)

<map object at 0x7f£dcb0262400>

As seen above we cannot simply print the output as map simply points to an object which has
not yet been evaluated; this saves unnecessary computation and avoids storing the evaluated list
in memory. The obejct returned is known as an iterator. In order to access the results we must turn
the object into a list.

[64]: list(output)
[64]: [1.0, 0.8824969025845955, 0.6669768108584744]

Note that the use of map is no longer necessary in Python 3 due to the existence of generator
functions.

When working with kernel methods we must compute the Gram matrix K with elements
(K)ij = K(x;,x;),i,j = 1,...,n for a given dataset (x;)!" ;. In order to do this we can make use of
Python’s broadcasting. Note that we will need to use Numpy arrays and Numpy’s exponential
function in order to make use of broadcasting.

[86]: import numpy as np
x = np.array([-2, -1, 0, 1, 2])

def gaussian_kernel(x, y, gamma=1):
Evaluates the gaussian kernel function for scalar inputs = and vy,
and bandwidth parameter gamma.

nimnn

return np.exp (- (x-y)**2/(2+gamma**2))

m = gaussian_kernel(x[:,None], x)
print (m)

[[1.00000000e+00 6.06530660e-01 1.35335283e-01 1.11089965e-02
3.35462628e-04]

[6.06530660e-01 1.00000000e+00 6.06530660e-01 1.35335283e-01
1.11089965e-02]

[1.35335283e-01 6.06530660e-01 1.00000000e+00 6.06530660e-01

[96]:

[99]:

[100]:

1.35335283e-011]
[1.11089965e-02 1.35335283e-01 6.06530660e-01 1.00000000e+00

6.06530660e-01]
[3.35462628e-04 1.11089965e-02 1.35335283e-01 6.06530660e-01

1.00000000e+00]]

We see that we have generated the Gram matrix! In the above we have used some reshaping
operations for Numpy arrays. By writing x[:,None] we can transform an array into a vertical
array. When applying an operation in Python to two arrays which are not of the same dimension,
Python will do its best to transform the smaller array to match the dimension of the larger array.
This is called broadcasting. In this case, Python will apply the function gaussian_kernel with
every possible combination of pairs. Below are some examples.

a = np.array([1, 2, 3, 4]1)
b =2
print(a + b)

[3 4 5 6]

In the above we see that the scalar b was broascast to a vector [2, 2, 2, 2] matching the

dimensions of a.

a = np.array([[1, 2,1, [3, 4]])
b = np.array([1, 2])

print(a + b)

[[2 4]
[4 6]1]

In the above example we see that the 1 x 2 array b was broadcast to be a 2 x 2 matrix with
rows equal to b.

1.1.6 Lambda Functions

So far we have defined functions and then provided these functions as arguments to other func-
tions. However we can save time by using lambda functions. These are anonymous functions
which we write on-the-go; we do not need to explicitly define them and assign them to a variable.

Below we will use a lambda to create an anonymous function which has the same behaviour

as mult defined above.
a=[1,2,3]
b = [2,2,2]
print(list (map(lambda x, y: x*y, a, b)))

[2, 4, 6]
Lambdas may be difficult to read initially. Their general syntax is as follows:
lambda arguments: expression

Which can also be written as

[104]:

[106]:

def name (arguments):
return expression

Note however that this version assigns a function to name whereas lambdas do not assign the
function to a variable.

2 Multicore (local) Parallel Programming

Now that we understand the basics of functional programming, we will use what we have learned
to parallelize a Python script. There are many libraries that offer parallelism in Python, and in this
report we will look at multiprocessing.

import multiprocessing

You can easily access the documentation of the module by typing
help(multiprocessing)

A useful function to know in the multiprocessing module is cpu_count. This returns the
number of cores your local machine has.

print (multiprocessing.cpu_count())

We see that the machine which compiled this report has 8 cores, however this is also including
cores which are simulated by Intel’s multithreading implementation. In reality this machine has 4
physical cores upon which it can perform 4 operations simultaneously.

Multiprocessing allows you to parallelise code by running multiple copies of your script on
different processor cores. One of the copies is known as the master copy and controls all other
worker copies. Due to this, in order to use multiprocessing we must write a script and run it using
the python interpreter in the terminal. As parallelism in this case works by running multiple
copies of your script, your script must follow a certain layout to ensure that all workers have
access to the same libraries and functions. A typical layout is to import modules at the beginning
of the scripts, followed by all function and class definitions. Then we ensure that only the master
copy of the script runs the code, and assigns operations to other workers.

2.1 Pool

A key feature of multiprocessing is multiprocessing.Pool, which provides a pool of workers
that can parallelize a map. Below is a script which we will save as pool.py. Note that below we
make use of IPython’s built-in magic commands.

from functools import reduce
from multiprocessing import Pool, cpu_count

def square(x):

return x * X

if __name__ "
print the number of cores

print (f"Number of cores available equals {cpu_count()}")

== "_ main__

create a pool of workers

with Pool() as pool:
create an array of 5000 integers, from 1 to 5000
r = range(1l, 5001)

result = pool.map(square, r)
total = reduce(lambda x, y: x + y, result)
print (£"The sum of the square of the first 5000 integers is {totall}")

[121]: %run pool.py

Number of cores available equals 8
The sum of the square of the first 5000 integers is 41679167500

The above code works in the following way:

* The line with Pool() as pool: creates a pool of workers which each have access
to the script. The number of workers in pool is equal to the number returned by
multithreading.cpu_count (), but can be changed manually by setting the processes vari-
able within Pool () e.g. with Pool(processes = 2) as pool:.

* The line result = pool.map(square, r) performs the parallelism. The map operation is
divided up among the workers in the pool. That is, if you have two workers then each
worker will conduct half of the work. If you have four then each will conduct a quarter of
the work.

We can write a similar script which explicitly tells us what worker is performing each opera-
tion, using multithreading.current_process(). The script below is saved as pool_v2.py

Jload pool_v2.py
from functools import reduce
from multiprocessing import Pool, current_process

def square(x):
"""Fynction to return the square of the argqument"""
print (f"Worker {current_process().pid} calculating square of {x}")
return x * X

if __name__ == "_main__":
nprocs = 8

print (f"Number of workers equals {nprocs}")

with Pool(processes=nprocs) as pool:

r =

range (1, 21)

result = pool.map(square, r)

total =

reduce(lambda x, y:

x +y, result)

print (£f"The sum of the square of the first 20 integers is {totall}")

[152]: Jrun pool_v2.py

Number of workers equals

Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker
Worker

17593
17589
17592
17590
17594
17595
17593
17591
17595
17590
17596
17593
17594
17592
17594
17592
17596
17595
17593
17589

calculating
calculating
calculating
calculating
calculating
calculating
calculating
calculating
calculating
calculating
calculating
calculating
calculating
calculating
calculating
calculating
calculating
calculating
calculating
calculating

The sum of the square of

8

square
square
square
square
square
square
square
square
square
square
square
square
square
square
square
square
square
square
square
square

of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of

the first

W oo ~NONPD PO

NS e e e el o e e i
O OO0 W NNDFE OO W

9
20 integers is 2870

We can also use multiple pools in a single script, but you must ensure that all required defini-
tions are placed before the line with Pool() as pool:.

There are a number of issues to overcome when using the functions provided by
multithreading as they do not always function the same way as Python’s built-in functions.
For example, the map function can only work with functions which take one argument. We can
overcome this problem by using zip to combine two lists into one list of tuples and using the
pool.starmap function.

Another problem you may encounter is that we cannot use lambda functions. There are many
ways that you may overcome this. You can simply define all of your functions explicitly, or you

can investigate other libraries (forks of multiprocessing) which can convert lambda functions to
binary operations.

2.2 Asynchronous Functions and Futures

The pool.map function tells each worker to run a certain function, but we may want different
workers to perform different operations. We can achieve this by using pool.apply which applies
functions to different workers. Below we will demostrate this.

The Python script below is saved as poolapply.py.

“python # %load poolapply.py import time from multiprocessing import Pool, cur-
rent_process

def delayed_add(x, y, nsecs): """ This function waits nsecs and then adds x and y.

mn

print (f"This is worker {current_process().pid} going to sleep for {msecs} second(s)")
time.sleep(nsecs)
print (f"This is worker {current_process().pid} waking up and adding {x} and {y}")
return x + y

if name == “main”:
print(£"This is the Master process {current_process().pid}")

with Pool() as pool:
rl = pool.apply(delayed_add, [2, 3, 2])
r2 = pool.apply(delayed_add, [1, -1, 1])

print (f"The results are {ri1} and {r2}.")

[16]: %run poolapply.py

This is the Master process 10074

This is worker 10611 going to sleep for 2 second(s)
This is worker 10611 waking up and adding 2 and 3
This is worker 10612 going to sleep for 1 second(s)
This is worker 10612 waking up and adding 1 and -1
The results are 5 and O.

Above is the result of running the script. We see that in this cast the parallelism is achieved by
the line

rl = pool.apply(delayed_add, [2, 3, 2])

which tells the master process to assign one worker to run the function delayed_add with
arguments [2, 3, 2]. In this case you will notice that the master process does not designate other

10

tasks until the worker has finished its task. We can overcome this with the use of asynchronous
functions.

We replace pool.apply with pool.apply_async and run the resulting script saved as
poolapplyasync.py. You will notice that there are a few other things which we need to be careful
of. Firstly, we must tell the master process to wait until our computations have finished before
it prints the outputs. This is achieve by r1.wait() and r2.wait(). Also, in order to access the
results we must use r1.get () and r2.get Q).

Jload poolapplyasync.py
import time
from multiprocessing import Pool, current_process

def delayed_add(x, y, nsecs):

mnmnn

This function waits msecs and then adds = and y.

mnmnn

print(f"This is worker {current_process().pid} going to sleep for {msecs} second(s)")
time.sleep(nsecs)
print(f"This is worker {current_process().pid} waking up and adding {x} and {y}")

return x + y

if __name__ == "__main__
print(f"This is the Master process {current_process() .pid}")

with Pool() as pool:
rl = pool.apply_async(delayed_add, [2, 3, 2])
r2 = pool.apply_async(delayed_add, [1, -1, 1]1)
rl.wait()
r2.wait()
print(f"The results are {rl.get()} and {r2.get()}.")

[17]: %run poolapplyasync.py

This is the Master process 10074

This is worker 10725 going to sleep for 1 second(s)
This is worker 10724 going to sleep for 2 second(s)
This is worker 10725 waking up and adding 1 and -1
This is worker 10724 waking up and adding 2 and 3
The results are 5 and O.

2.3 Asynchronous Mapping

Just as multiprocessing provides asyncronous functions, it also provides asyncronous maps.
Recall that asynchronous simply refers to the fast that the master process is not blocked whilst

11

the pool of workers are carrying out computations. A simple example can be found below.

Jload asyncmap.py

import time

from functools import reduce

from multiprocessing import Pool, current_process

def delayed_add(x, y):

This function sleeps for 1 second and then adds = and vy

mnmnn

print(f"This is worker {current_process().pid} performing operation delayed_add({x}, {y})"
time.sleep(1)
return x + y

def delayed_subtract(x, y):

nmnn

This function sleeps for 1 second and then subtracts = and vy

mnmnn

time.sleep(1)

print(f"This is worker {current_process().pid} performing operation delayed_subtract ({x}, -

return x - y

if __name__ == "__main__":
a = range(l, 6)
b = range(6, 11)

with Pool() as pool:

rl = pool.starmap_async(delayed_add, zip(a, b))

r2 = pool.starmap_async(delayed_subtract, zip(a, b))
rl.waitQ

r2.wait()

total_sum = reduce(lambda x, y: x + y, rl.get())
total_diff = reduce(lambda x, y: x + y, r2.get())

print(f"a = {list(a)} \nb = {list(b)}")
print(f"The total sum of a and b is {total_sum}")
print(£"The sum of element-wise differences between a and b is {total_diff}")

[163]: Jrun asyncmap.py

12

This is worker 18915 performing operation delayed_add(2, 7)

This is worker 18908 performing operation delayed_add(1, 6)

This is worker 18911 performing operation delayed_add(4, 9)

This is worker 18912 performing operation delayed_add(5, 10)
This is worker 18909 performing operation delayed_add(3, 8)

This is worker 18913 performing operation delayed_subtract(l, 6)
This is worker 18910 performing operation delayed_subtract(2, 7)
This is worker 18914 performing operation delayed_subtract(3, 8)
This is worker 18915 performing operation delayed_subtract(4, 9)
This is worker 18908 performing operation delayed_subtract(5, 10)
a=1[1, 2, 3, 4, 5]

b 6, 7, 8, 9, 10]

The total sum of a and b is 55

The sum of element-wise differences between a and b is -25

Dividing simple operations across processor cores can be rather inefficient if the overhead of
assigning the operation is greater than that of the actual computation. This is the case with the
above operations — the cost of assigning a single addition operation to a worker is far greater
than the computational cost of assigning a task. To overcome this problem we can assign a chunk
of operations to a worker.

We can do this by specifying the chunksize in the pool function. You can find an example
below.

Jload asyncmap-chunks.py

import time

from functools import reduce

from multiprocessing import Pool, current_process
def delayed_add(x, y):

This function sleeps for 1 second and then adds = and vy

mnimn

print(£"This is worker {current_process().pid} performing operation delayed_add({x}, {y})"
time.sleep(1)
return x + y

def delayed_subtract(x, y):

mnimn

This function sleeps for 1 second and then subtracts = and ¥y

mnimn

time.sleep(1)

print(f"This is worker {current_process().pid} performing operation delayed_subtract ({x}, -

13

return x - y

if __name__ == "__main__":
a = range(l, 6)
b = range(6, 11)

with Pool() as pool:
rl = pool.starmap_async(delayed_add, zip(a, b), chunksize=3)
r2 = pool.starmap_async(delayed_subtract, zip(a, b), chunksize=3)
rl.wait()
r2.wait()

total_sum = reduce(lambda x, y: x + y, ri.get())
total_diff = reduce(lambda x, y: x +y, r2.get())

print(f'"a = {list(a)} \nb = {list(b)}")
print(£"The total sum of a and b is {total_sum}")
print(f”The sum of element-wise differences between a and b is {total_diffl}")

[169]: Jrun asyncmap-chunks.py

This is worker 19149 performing operation delayed_add(4, 9)

This is worker 19148 performing operation delayed_add(1l, 6)

This is worker 19148 performing operation delayed_add(2, 7)

This is worker 19150 performing operation delayed_subtract(l, 6)
This is worker 19151 performing operation delayed_subtract(4, 9)
This is worker 19149 performing operation delayed_add(5, 10)
This is worker 19148 performing operation delayed_add(3, 8)

This is worker 19151 performing operation delayed_subtract(5, 10)
This is worker 19150 performing operation delayed_subtract(2, 7)
This is worker 19150 performing operation delayed_subtract(3, 8)
a=1[1, 2, 3, 4, 5]

b=1[6, 7, 8 9, 10]

The total sum of a and b is 55

The sum of element-wise differences between a and b is -25

14

	Parallel Python
	Part 1
	Functional Programming
	Functions as Objects
	Properties of a Function
	Functions as Arguments
	Mapping Functions
	Lambda Functions

	Multicore (local) Parallel Programming
	Pool
	Asynchronous Functions and Futures
	Asynchronous Mapping

