
Report 7 - Intermediate Python and Data Analysis in Python

May 31, 2020

1 Intermediate Python

In this document we will cover some basic and intermediate concepts in Python. We will be
using Python version 3.7.3. This can be checked quite easily by running python --version in the
terminal. The beginning of this document closely follows the Intermediate Python course offered
by the ACRC at the University of Bristol, and the second half of this document follows the Applied
Data Analysis in Python course. The courses can be found here and here.

1.1 Functions

We begin with discussing functions. When we encounter an order of operations which we may
frequently want to repeat (perhaps with different arguments), it may be best to put the code into
a function.

As a toy example, suppose we routinely want to add two arrays element-wise. We could easily
write a function to do this for us. The code can be found below.

[10]: def add_array(x, y):
z = []
for x_elem, y_elem in zip(x,y):

z.append(x_elem + y_elem)
return z

We can easily test the above code by simply observing a set of inputs and the funtion’s output.
[11]: add_array([1,2,3], [4,5,6])

[11]: [5, 7, 9]

Looking at the above function demonstrates how we define a function in Python. We must
define the function name and its arguments using def and follow this with a colon :.

It’s also clear that in order to call a function we must use its name and pass it its arguments.
Without supplying the needed arguments (or if we provide too many), the function will not run
as demonstrated below.

[12]: add_array()

␣
↪→---

1

https://milliams.com/courses/intermediate_python
https://milliams.com/courses/applied_data_analysis/

TypeError Traceback (most recent call␣
↪→last)

<ipython-input-12-b51761f97c43> in <module>
----> 1 add_array()

TypeError: add_array() missing 2 required positional arguments: 'x' and␣
↪→'y'

[13]: add_array([1,2],[2,3],[3,4])

␣
↪→---

TypeError Traceback (most recent call␣
↪→last)

<ipython-input-13-0ff9f97973bb> in <module>
----> 1 add_array([1,2],[2,3],[3,4])

TypeError: add_array() takes 2 positional arguments but 3 were given

Note that we can also assign the output of a function to a variable, as you might expect.
[14]: test = add_array([1,2], [3,4])

print(test)

[4, 6]

A useful feature in Python which is not offered by R, is the ability to assign multiple variables
at once. This is best demonstrated by an example.

[17]: a, b = 1, 2
print(a)
print(b)

1
2

This can also be used in confunction with functions! We can easily assign the multiple outputs
of a function to appropriate variables when necessary.

[18]: def multiple_output(a, b):
return a, b, 2*a, 2*b

2

[20]: a, b, two_a, two_b = multiple_output(a, b)
print(a, b, two_a, two_b)

1 2 2 4

1.2 Modules

Modules provide a natural progression from functions. In order to reuse code across multiple
scripts, we would need to copy and paste functions into each script. One way to overcome this
problem in Python is to use modules.

Modules in Python allow us to import a set of functions from a script. Often, certain func-
tionality is packaged into a module. For example, we may have a script called arrays.py and
tensors.py — one will provide a set of functions for arrays, the other for tensors.

We will continue with the example used in the above section. We will add our function
add_array to the module (file) arrays.py, and import this module below.

[22]: import arrays

arrays.add_array([1,2], [3,4])

[22]: [4, 6]

We see that in order to use functions within the arrays module, we must tell Python that we
are calling functions from the arrays module by arrays.<module_function>.

If we want to avoid this, we can instead import the module using from arrays import *. This
works because from <module> import <function> directly imports a function from a module
into the local namespace.

[28]: from arrays import *

add_array([1,2], [3, 4])

[28]: [4, 6]

1.3 Classes

Python also provides a simple-to-use implementation of object-oriented programming. This again
allows us to easily reuse functionality. Classes simplify code by combining functions/code with
data. For example, when analyzing data we may define a linear regression class which will take
our data (and perhaps a model formula or design matrix) as an argument and create a linear model
object. The class could initialize the object by computing coefficient estimates and predictions
over the test set, and could have a class-specific function such as .predict() which would take a
datapoint as an argument and output a prediction.

Below we demonstrate the use of classes by implementing a linear regression model.
[2]: import numpy as np

class LinearRegression:
def __init__(self, X, y):

self._X = X
self._y = y

3

self.betahat = (np.linalg.inv(np.matmul(np.transpose(X),X)) @ (np.
↪→transpose(X) @ y))

def predict(self, xstar):
return np.matmul(xstar, self.betahat)

Let’s simulate some data and check that the above code works. We simulate X ∼ N(0, 0.12),
and generate y using y = 1 + 1.5X + ϵ, where the noise ϵ ∼ N(0, 0.32).

[3]: mu, sigma = 0, 0.1
X = np.column_stack((np.repeat(1,100), np.random.normal(mu, sigma, 100)))
y = X[:,0] + 1.5*X[:,1] + np.random.normal(0,0.3,100)

[4]: model = LinearRegression(X, y)

Let’s check the coefficient estimates produced.
[5]: model.betahat

[5]: array([0.97220882, 1.70190582])

We can also check that the predict function works as expected.
[6]: xstar=np.array([[1, 0], [1,1.5], [1,3]])

model.predict(xstar)

[6]: array([0.97220882, 3.52506755, 6.07792627])

Given that we know the model formulation, the predictions seem logical.

1.3.1 Constructing classes

Let’s discuss exactly how to construct classes.
To begin constructing a class we must use the class keyword. Within the class we must de-

fine __init__ which is known as the constructor. __init__ is frequently referred to as “dunder
init” (where dunder is short for double underscore). The constructor is required in all classes and
specifies how to create and intialize an object within the class. In the example above the con-
structor stores the dataset (X, y) and computes the parameter estimates β̂ which it stores under
.betahat. Thus, when we create an object of class LinearRegression, the coefficient estimates are
immediately computed in the background and attached to the object.

Note that the variables are attached to self which is also the first argument of functions of the
class. self is a special variable only available to functions of the class, and provides access to all
of the object’s variables e.g. in the function predict we use betahat which is a variable belonging
to self.

Note that we do not need to pass self as an argument to the function or class, Python does
this for us. We also use underscores to denote variables which are private to the class and not
necessarily for users of the class/function. You may notice that an underscore is not used for the
definition of betahat, as it is very likely the user of the class would like access to the variable.

2 Data Analysis in Python

In this section we will introduce libraries for data analysis in Python. We will use scikit-learn for
the analysis, and we will use the dataframes offered by pandas. In order to simulate data we will

4

use NumPy.
We begin with something we are very familiar with: linear regression.

2.1 Linear Regression

In this subsection I will assume that we are very familiar with linear regression, and will only
discuss how to implement linear regression in Python. First we must generate some data.

We will generate the data using Numpy, but before generating data we must set the seed for
reproducibility. This can be done easily using np.random.RandomState(seed).

[26]: import numpy as np

rng = np.random.RandomState(123)

dataset size
n = 100

x = rng.uniform(-1,1,n)
y = 0.5 + 2*x + rng.normal(0,0.2,n)

We can visualize the data relatively easily using a pandas dataframe and matplotlib.
[84]: %matplotlib inline

plt.rcParams['figure.dpi']= 150
from pandas import DataFrame

data = DataFrame({"x": x,
"y": y})

data.plot.scatter("x", "y")

[84]: <matplotlib.axes._subplots.AxesSubplot at 0x7fb7902ecd30>

5

Now in order to fit a linear model to the data we will create a linear regression object using
scikit-learn. scikit-learn provides many other methods for modeling data which you can investi-
gate in the documentation. For regression problems some popular methods provided are (kernel)
ridge regression, generalized linear models, and Gaussian process regression.

Each model provided by scikit-learn is a Python class, and an implementation can be seen
below.

[10]: from sklearn.linear_model import LinearRegression

model = LinearRegression(fit_intercept=True)

In the above code we have created our model and specified its hyperparameters, but we have
not provided it with data to fit. In order to train the model we must call the method fit() on
the object. scikit-learn methods take input data in the following format 1. The input must have
dimensions [n_samples, n_features] (i.e. the standard n× p dimensional model matrix). 2. The
response must have dimension [n_samples].

Note that even though we only have one feature, the input must still have dimensions [100,
1]. We have stored our data in a pandas DataFrame and thus to extract the data in this format we
must use data[["x"]]. If we use data["x"] the data will be extracted as a pandas Series object
with shape [n_samples]. Thus, in order to extract our response from the DataFrame we will use
data["y"].

[11]: model.fit(data[["x"]], data["y"])

[11]: LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False)

In order to make predictions we call .predict() on our trained model. We will make predic-
tions for all values of x from -1 to 1 and plot the predicted values using matplotlib. Recall that

6

https://scikit-learn.org/stable/supervised_learning.html#supervised-learning

scikit-learn requires our input to have two dimensions, and so we use np.newaxis to add a new
dimension to an existing object.

[89]: xfit = np.linspace(-1,1)
yfit = model.predict(xfit[:, np.newaxis])

ax = data.plot.scatter("x", "y")
ax.plot(xfit, yfit, linestyle="--", color="red")

[89]: [<matplotlib.lines.Line2D at 0x7fb7830da588>]

The model fit to the data has the following parameters:
[20]: print(f"Model coefficient: {model.coef_[0]}")

print(f"Model intercept: {model.intercept_}")

Model coefficient: 1.9730953513408522
Model intercept: 0.5070848414292028

2.2 Kernel Ridge Regression

As mentioned above, it is possible to implement much more interesting models using scikit-learn.
Below we will implement a kernel ridge regression using a Gaussian kernel (often called the RBF
function/kernel). In this scenario the bandwidth (or length-scale) of the kernel is a hyperparame-
ter to be tuned; we will choose this parameter by using a cross-validation procedure implemented
in scikit-learn.

7

[75]: from sklearn.kernel_ridge import KernelRidge
from sklearn.model_selection import GridSearchCV
from sklearn.gaussian_process.kernels import RBF

generate data
rng = np.random.RandomState(123)
X = 10*rng.rand(100, 1)
y = 0.5 + np.sin(X).ravel() + rng.normal(0,0.8,100)

fit a kernel ridge regression
perform grid-search cv procedure to tune bandwidth
param_grid = {"kernel": [RBF(length_scale) for length_scale in np.logspace(-2,␣

↪→5, 100)]}
krr = GridSearchCV(KernelRidge(), param_grid=param_grid, cv=5)
krr.fit(X, y)

[75]: GridSearchCV(cv=5, error_score='raise-deprecating',
estimator=KernelRidge(alpha=1, coef0=1, degree=3, gamma=None,

kernel='linear', kernel_params=None),
iid='warn', n_jobs=None,
param_grid={'kernel': [RBF(length_scale=0.01),

RBF(length_scale=0.0118),
RBF(length_scale=0.0138),
RBF(length_scale=0.0163),
RBF(length_scale=0.0192),
RBF(length_scale=0.0226),
RBF(length_sc...
RBF(length_scale=0.221),
RBF(length_scale=0.26),
RBF(length_scale=0.305),
RBF(length_scale=0.359),
RBF(length_scale=0.423),
RBF(length_scale=0.498),
RBF(length_scale=0.586),
RBF(length_scale=0.689),
RBF(length_scale=0.811),
RBF(length_scale=0.955),
RBF(length_scale=1.12), ...]},

pre_dispatch='2*n_jobs', refit=True, return_train_score=False,
scoring=None, verbose=0)

In the above code we have generated some non-linear data that we want to fit a model to. We
have also specified a grid of length-scale parameters for the grid search procedure to minimize the
CV score over, using GridSearchCV. In this case we have used np.logscale to generate possible
parameter values on a logscale, as it’s likely that the optimal length-scale is small (in this case
less than two or three, but this is subjective). In this case we have chosen to implement 5-fold
cross-validation by setting cv=5.

The grid-search procedure does not run until we provide the model with data using the

8

fit method. Having fit the model we can output the model parameters using the model’s
best_params_ method explained in the scikit-learn documentation.

[87]: krr.best_params_

[87]: {'kernel': RBF(length_scale=1.83)}

Below we produce a plot of the predictions provided by a kernel ridge regression fit to the
generated data.

[85]: import matplotlib.pyplot as plt

produce predictions for plot
X_fit = np.linspace(0,10, 1000)[:, None]
y_fit = krr.predict(X_fit)

plot
plt.scatter(X, y, label="data", c="darkgrey")
plt.plot(X_fit, 0.5 + np.sin(X_fit), c = "black", label="true", lw=2)
plt.plot(X_fit, y_fit, label=f"KRR fit {krr.best_params_}", lw=2)
plt.legend(loc="best")

[85]: <matplotlib.legend.Legend at 0x7fb782fc3eb8>

9

	Intermediate Python
	Functions
	Modules
	Classes
	Constructing classes

	Data Analysis in Python
	Linear Regression
	Kernel Ridge Regression

