Portfolio Report 5: HPC

Jake Spiteri

2020

Intro to HPC

This document will cover the use of BlueCrystal Phase 3. We will discuss how to login to the HPC, send/receive
files, and run jobs.

Logging in on Linux

To log in from a Linux machine, we use the built-in ssh client. We enter the following command into the
terminal:

ssh -X <username>@bluecrystalp3.acrc.bris.ac.uk

A prompt will ask for the account password, and upon entering the password we will be given access to a
login node in which we can compile and submit jobs to a standard, high-memory, or GPU node.

Modules and the environment

BlueCrystal 3 has a wide range of software packages installed, and when submitting a job it is good practice
to specify the modules required to run the job. By specifying the local environment in the job submission we
can ensure that the job always runs in the same environment.

To use a package we use the Environment Modules system. We can easily print all packages available by
using

module avail
The (shortened) output can be seen below.

[js146060newblue4 ~]$ module avail

———————————————————————————— /cm/local/modulefiles —————————————————————————————

cluster-tools/6.0 module-info
cmd null

dot shared
freeipmi/1.1.3 use.own

intel-opencl/1.2-3.0.67279 version
ipmitool/1.8.11

acml/gcc/64/5.1.0
acml/gcc/fma4/5.1.0
acml/gcc/mp/64/5.1.0
acml/gcc/mp/fmad/5.1.0

acml/gcc-int64/64/5.1.0
acml/gcc-int64/fma4/5.1.0
acml/gcc-int64/mp/64/5.1.0
acml/gcc-int64/mp/fmad/5.1.0
acml/open64/64/5.1.0
acml/open64/fma4/5.1.0
acml/open64/mp/64/5.1.0
acml/open64/mp/fma4/5.1.0
acml/open64-int64/64/5.1.0
acml/open64-int64/fma4/5.1.0
acml/open64-int64/mp/64/5.1.0
acml/open64-int64/mp/fma4/5.1.0

languages/R-2.15.1
languages/R-2.15.1-ATLAS
languages/R-3.0.2
languages/R-3.0.2-ATLAS
languages/R-3.1.1-ATLAS
languages/R-3.2.0-ATLAS
languages/R-3.2.2-ATLAS
languages/R-3.2.4-ATLAS
languages/R-3.3.1-ATLAS
languages/R-3.3.2-ATLAS
languages/R-3.3.3-ATLAS
languages/R-3.4.1-ATLAS
languages/R-3.4.4-ATLAS-gcc- 0

languages/R-3
languages/R-3
languages/R-3.

.5-ATLAS-gcc-T7.
.5.1-ATLAS-gcc-

6.2-gcc9.1.0

7.1.
1.0
6.1

We see that multiple versions of R are available. In order to add R to our environment we can use module
add as follows

module add languages/R-3.5.1-ATLAS-gcc-6.1

Similarly, we can remove a package using module del, and to show which modules are currently loaded we
can use module list.

Jobs

In order to run a job we must submit a job script to the queuing system. Before we submit the job we should
compile the necessary code, and move any data required to BlueCrystal using scp. The job script should
contain all of the commands required to run the job, and is often written as a shell script but this is not
necessary — an R script will also work. There are no limits or requirements on what the shell script does,
but there are some suggestions, such as comments which tell the queuing system which resources are required
for the job.

To demonstrate the queueing system and jobs we will use the workshop files provided on BlueCrystal. To
move the .tar file to the local directory and unpack it, we use the following commands

cd

cp ../workshop.tar .
tar xvf workshop.tar
cd workshop

There are five shell scripts in the workshop/ directory. Below we print the contents of one of them.

[js146060@newbluel workshopl]$ more jobl.sh

#!/bin/env bash

#

#

Define working directory
export WORK_DIR=${HOME}/workshop

Change into working directory
cd ${WORK_DIR}

Execute code
/bin/hostname

sleep 20

The script simply sleeps for 20 seconds. To submit this to the queue, we run the command gsub jobl.sh
which will return the job number. To check on the status of the job we can use qstat <job_number>. A
useful tip is to instead use the Linux command watch to rerun the gstat command every 2 seconds by default
(e.g. watch gstat <job_number>). Once the script has run, two output files will appear in our directory
with the names <job_script>.o<job_number>, and <job_script>.e<job_number> which are the standard
output and error respectively. For example, in the local directory (workshop) we have jobl.sh.09190965
and jobl.sh.e9190965 as a result of running the jobl.sh script.

Below are some of the queuing system commands:
e gsub <job_script> — Submits the specified job.
e gstat <job_number> — Checks the status of the specified job.
e qdel <job_number> — Deletes the specified job.
e showstart <job_number> — Provides an estimate of the start and end time of the script.
e showq — Shows all of the jobs in the queue.

When we submit the jobl.sh script, the queuing system attempts to estimate the expected running time,
and the number of nodes required. However it is best to specify these manually by leaving comments in
the shell script for the queueing system. For example, in the workshop file job2.sh we specify #PBS -1
nodes=1:ppn=1,walltime=00:10:00. -1 nodes=1:ppn=1 tells the queueing system that the script requires
1 node, with 1 processor per node, and -1 walltime=00:10:00 tells the scheduler the expected runtime is
10 minutes.

Below we submit jobl.sh and job2.sh as jobs and use gstat -au js14606 to check the status of the jobs
I have submitted.

[js146060newblue4 workshopl$ gsub jobl.sh
9564646 .master.cm.cluster

[js146060newblue4 workshopl$ gsub job2.sh
9564648 .master.cm.cluster

[js14606@newblue4 workshopl$ gstat -au js14606

master.cm.cluster:

Req'd Req'd

Job ID Username Queue Jobname SessID NDS TSK Memory Time
9564646 .master.c js14606 veryshor jobl.sh -- -- -- -- 01:00:00 Q
9564648 .master.c js14606 veryshor job2.sh -= 1 1 -— 00:10:00 Q

We see that the scheduler recognizes that job2.sh requires 1 core (NDS) and 1 node per core (TSK), but
it does not know the resource requirements for jobl.sh. We also see that the required time of jobl.sh is

estimated by the scheduler to be 1 hour. Given that job2.sh does not require many resources, it is likely
that this job may be scheduled to run first and so it is worthwhile to specify the required resources in your
job script.

The queueing system also allows us to specify other job properties, such as the job name, required memory, a
job array etc. When running complex jobs which require a lot of resources, a useful command to give the
scheduler is #PBS -M <email_address> which tells the scheduler to send an email to the specified address at
certain points in the job’s lifecycle. By default, the scheduler will only send an email if the job is aborted, but
we can specify that we want to receive an email when the job begins and ends via -m b and -m e respectively.

We implement this by creating a new file job6.sh which is shown below.

#!/bin/env bash

#

#

#PBS -1 nodes=1:ppn=1,walltime=00:10:00
#PBS -m abe

#PBS -M jake.spiteri@bristol.ac.uk

Define working directory
export WORK_DIR=${HOME}/workshop

Change into working directory
cd ${WORK_DIR}

Execute code
/bin/hostname

sleep 20

The line #PBS -m abe specified that we want to receive an email if the job is aborted, and when it begins
and ends. Indeed, I received the following emails upon submitting the job:

PBS Job Id: 9564931 .master.cm.cluster
Job Name: job6.sh

Exec host: node33-009/6

Begun execution

PBS Job Id: 9564931.master.cm.cluster

Job Name: job6.sh

Exec host: 1node33-009/6

Execution terminated

Exit_status=0

Error_Path: newblue4.cm.cluster:/newhome/js14606/workshop/job6.sh.e9564931
Output_Path: newblue4.cm.cluster:/newhome/js14606/workshop/job6.sh.09564931

For more information, you can find additional PBS commands in the documentation.

https://www.pbsworks.com/pdfs/PBSUserGuide18.2.pdf

	Intro to HPC
	Logging in on Linux
	Modules and the environment
	Jobs

