
Portfolio Report 4: Linux

Jake Spiteri

2020

The Unix Shell

Pipes and Filters

Pipes and filters allow us to combine multiple programs and functions. This allows us to perform a sequence
of actions and then output the result rather than reading, editing, and writing to a file. This saves a lot of
time and allows us to develop more powerful programs.

We will look at using pipes with data from the directory data-shell/molecules which contains files describing
simple organic molecules. This dataset can be downloaded here.

We can quickly view all files in this rectory by using the ls command. We can use the flag -F to make the
output a little more readable. Below you see that folders now have a trailing / indicating that this is a
directory, and all files have their extensions displayed.
ls -F

creatures/
data/
get_lines.sh
middle.sh
molecules/
north-pacific-gyre/
notes.txt
pizza.cfg
solar.pdf
writing/

We can also use ls to print the contents of directories other than our current working directory. Below we
print information about files in the sub-directory molecules.
ls molecules -F

cat
cubane.pdb
ethane.pdb
--help
lengths.txt
methane.pdb
octane.pdb
pentane.pdb
propane.pdb
sort
sorted-lengths.txt
testfile01.txt

1

https://swcarpentry.github.io/shell-novice/

We can also use cd to move the working directory into the specified directory. We will use cat to print out a
file. The function cat gets its name from concatenate — when given multiple files it will combine them one
after the other, but in this case we only supply one file. Let’s look at cubane.pdb.
cd molecules
cat cubane.pdb

COMPND CUBANE
AUTHOR DAVE WOODCOCK 95 12 06
ATOM 1 C 1 0.789 -0.852 0.504 1.00 0.00
ATOM 2 C 1 -0.161 -1.104 -0.624 1.00 0.00
ATOM 3 C 1 -1.262 -0.440 0.160 1.00 0.00
ATOM 4 C 1 -0.289 -0.202 1.284 1.00 0.00
ATOM 5 C 1 1.203 0.513 -0.094 1.00 0.00
ATOM 6 C 1 0.099 1.184 0.694 1.00 0.00
ATOM 7 C 1 -0.885 0.959 -0.460 1.00 0.00
ATOM 8 C 1 0.236 0.283 -1.269 1.00 0.00
ATOM 9 H 1 1.410 -1.631 0.942 1.00 0.00
ATOM 10 H 1 -0.262 -2.112 -1.024 1.00 0.00
ATOM 11 H 1 -2.224 -0.925 0.328 1.00 0.00
ATOM 12 H 1 -0.468 -0.501 2.315 1.00 0.00
ATOM 13 H 1 2.224 0.892 -0.134 1.00 0.00
ATOM 14 H 1 0.240 2.112 1.251 1.00 0.00
ATOM 15 H 1 -1.565 1.730 -0.831 1.00 0.00
ATOM 16 H 1 0.472 0.494 -2.315 1.00 0.00
TER 17 1
END

In order to avoid printing an entire file which can be quite an expensive operation, we can use head or tail
to print the beginning or end of the file respectively. These functions also allow us to specify how many lines
we want to print via -n.
cd molecules
head cubane.pdb -n 2
tail cubane.pdb -n 4

COMPND CUBANE
AUTHOR DAVE WOODCOCK 95 12 06
ATOM 15 H 1 -1.565 1.730 -0.831 1.00 0.00
ATOM 16 H 1 0.472 0.494 -2.315 1.00 0.00
TER 17 1
END

Let’s use the word count command wc to compute the number of words in a document. We could also use
the -l attachment to only report the number of lines in the document. By default, the wc command outputs
the newline, word, and byte counts for each file provided; this information can easily be found by typing wc
--help into the terminal.
cd molecules
wc cubane.pdb
wc -l cubane.pdb

20 156 1158 cubane.pdb
20 cubane.pdb

We can use regular expressions to incorporate flexibility into our commands. Running the command ls *.pdb
will return all file names which end in .pdb. In a similar fashion, we could print all files in all subdirectories
by running ls *. This is quite a powerful technique which allows us to select all files within a directory of a

2

particular file type.
cd molecules
wc *.pdb

20 156 1158 cubane.pdb
12 84 622 ethane.pdb
9 57 422 methane.pdb
30 246 1828 octane.pdb
21 165 1226 pentane.pdb
15 111 825 propane.pdb
107 819 6081 total

ls *

get_lines.sh
middle.sh
notes.txt
pizza.cfg
solar.pdf
##
creatures:
basilisk.dat
minotaur.dat
original-basilisk.dat
original-minotaur.dat
original-original-basilisk.dat
original-original-minotaur.dat
original-original-original-basilisk.dat
original-original-original-minotaur.dat
original-original-original-original-basilisk.dat
original-original-original-original-minotaur.dat
original-original-original-original-unicorn.dat
original-original-original-unicorn.dat
original-original-unicorn.dat
original-unicorn.dat
unicorn.dat
##
data:
amino-acids.txt
animal-counts
animals.txt
elements
morse.txt
pdb
planets.txt
salmon.txt
sunspot.txt
##
molecules:
cat
cubane.pdb
ethane.pdb
--help
lengths.txt
methane.pdb

3

octane.pdb
pentane.pdb
propane.pdb
sort
sorted-lengths.txt
testfile01.txt
##
north-pacific-gyre:
2012-07-03
##
writing:
data
haiku.txt
thesis
tools

We can combine the commands we have seen thus far using pipes. For example, we may be interested in
printing the number of lines in each document in a subdirectory and redirecting this information to a text file.
cd molecules
wc -l *.pdb > lengths.txt

We print the lengths.txt file.
cd molecules
cat lengths.txt

20 cubane.pdb
12 ethane.pdb
9 methane.pdb
30 octane.pdb
21 pentane.pdb
15 propane.pdb
107 total

We may be interested in sorting this document, which can again be done easily in the UNIX shell. By default
the sort filter sorts data alphabetically, but we can implement a numeric sort by specifying -n. Once again
we can use pipes to save the sorted data.
cd molecules
sort -n lengths.txt > sorted-lengths.txt

cd molecules
cat sorted-lengths.txt

9 methane.pdb
12 ethane.pdb
15 propane.pdb
20 cubane.pdb
21 pentane.pdb
30 octane.pdb
107 total

Interestingly, we could combine all of the above operations into a single line using pipes. The pipe | tells the
shell that we want to use the output of the program on the left as an input to the program on the right.
cd molecules

combine word count and sort

4

wc -l *.pdb | sort -n

combine word count and sort, and save in a text file
wc -l *.pdb | sort -n > lengths.txt

9 methane.pdb
12 ethane.pdb
15 propane.pdb
20 cubane.pdb
21 pentane.pdb
30 octane.pdb
107 total

We could combine the above operations to print out the largest or smallest file (in terms of line count) with a
single line of code.
cd molecules

smallest
wc -l *.pdb | sort -n | head -n 1

largest
wc -l *.pdb | sort -n | tail -n 2 | head -n 1

9 methane.pdb
30 octane.pdb

We now demonstrate the use of the cut filter which separates lines of a file using delimiters. For this example
we will use the animals.txt file.
cd data
cat animals.txt

2012-11-05,deer
2012-11-05,rabbit
2012-11-05,raccoon
2012-11-06,rabbit
2012-11-06,deer
2012-11-06,fox
2012-11-07,rabbit
2012-11-07,bear

We want to separate the dates from the animals. They are separated by a comma delimiter which we must
provide to cut. We must also specify one and only one of -b, -c, or -f, to indicate which information to
retain. In this case we will keep the second field i.e. the data after the delimiter.
cd data
cat animals.txt | cut -d , -f 2

deer
rabbit
raccoon
rabbit
deer
fox
rabbit
bear

5

We can combine these simple filters to provide advanced functionality. Let’s print which days animals were
recorded.
cd data
cat animals.txt | cut -d , -f 1 | uniq

2012-11-05
2012-11-06
2012-11-07

We could also print which animals were seen.
cd data
cat animals.txt | cut -d , -f 2 | sort -u

bear
deer
fox
rabbit
raccoon

Loops

Loops allow us to repeat a command a given number of times, or for each item in a list. Using a loop can
greatly reduce the amount of code needed for repetitive tasks.

In this example we will use the creatures directory. Within the directory are three files: basilisk.dat,
minotaur.dat, and unicorn.dat. Let’s print the head of each files.
cd creatures
head -n 5 basilisk.dat minotaur.dat unicorn.dat

==> basilisk.dat <==
COMMON NAME: basilisk
CLASSIFICATION: basiliscus vulgaris
UPDATED: 1745-05-02
CCCCAACGAG
GAAACAGATC
##
==> minotaur.dat <==
COMMON NAME: minotaur
CLASSIFICATION: bos hominus
UPDATED: 1765-02-17
CCCGAAGGAC
CGACATCTCT
##
==> unicorn.dat <==
COMMON NAME: unicorn
CLASSIFICATION: equus monoceros
UPDATED: 1738-11-24
AGCCGGGTCG
CTTTACCTTA

Let’s use the filters we discussed above and a loop to extract the classification for each file, which is contained
in the second row. We see that this can be done with minimal effort.
cd creatures
for filename in basilisk.dat minotaur.dat unicorn.dat

6

do head -n 2 $filename | tail -n 1
done

CLASSIFICATION: basiliscus vulgaris
CLASSIFICATION: bos hominus
CLASSIFICATION: equus monoceros

The general syntax for a for loop in the UNIX shell is
for thing in list_of_things
do filter $thing
done

To make life easier we can combine for loops with regular expressions. For example instead of manually
writing out the three .dat files, we can simply list them using a regular expression *.dat.
cd creatures
for file in *.dat
do

echo $file
head -n 2 $file | tail -n 1

done

basilisk.dat
CLASSIFICATION: basiliscus vulgaris
minotaur.dat
CLASSIFICATION: bos hominus
original-basilisk.dat
CLASSIFICATION: basiliscus vulgaris
original-minotaur.dat
CLASSIFICATION: bos hominus
original-original-basilisk.dat
CLASSIFICATION: basiliscus vulgaris
original-original-minotaur.dat
CLASSIFICATION: bos hominus
original-original-original-basilisk.dat
CLASSIFICATION: basiliscus vulgaris
original-original-original-minotaur.dat
CLASSIFICATION: bos hominus
original-original-original-original-basilisk.dat
CLASSIFICATION: basiliscus vulgaris
original-original-original-original-minotaur.dat
CLASSIFICATION: bos hominus
original-original-original-original-unicorn.dat
CLASSIFICATION: equus monoceros
original-original-original-unicorn.dat
CLASSIFICATION: equus monoceros
original-original-unicorn.dat
CLASSIFICATION: equus monoceros
original-unicorn.dat
CLASSIFICATION: equus monoceros
unicorn.dat
CLASSIFICATION: equus monoceros

Let’s use a for loop to backup our files so we can safely modify them.

7

cd creatures
for file in *.dat
do

cp $file original-$file
done

Shell Scripts

Now we can explore the real power of the UNIX shell, which come in the form of scripts. You may often
find yourself reusing the same set of commands frequently in order to update a set of files or push them to a
server. In this scenario it may be work writing a script which will repeat these commands for you.

We will write a very basic script to extract the second to fifth line of any document supplied to it. The script
is below and saved as middle.sh.
make script
echo "
head -n 5 \$1 | tail -n 4
" > middle.sh

test script
cd molecules
bash ../middle.sh octane.pdb

AUTHOR DAVE WOODCOCK 96 01 05
ATOM 1 C 1 -4.397 0.370 -0.255 1.00 0.00
ATOM 2 C 1 -3.113 -0.447 -0.421 1.00 0.00
ATOM 3 C 1 -1.896 0.386 -0.007 1.00 0.00

We can increase the flexibility of our scripts by requiring arguments. Below we will write a script to extract
lines from a file. We should be able to call the script in the following way bash get_lines.sh input
from_line to_line. Below we extract lines 1 to 10.
make script
echo "
diff=\$(expr \$3 - \$2)
head -n \"\$3\" \"\$1\" | tail -n \$diff
" > get_lines.sh

test script
cd molecules
bash ../get_lines.sh octane.pdb 1 10

AUTHOR DAVE WOODCOCK 96 01 05
ATOM 1 C 1 -4.397 0.370 -0.255 1.00 0.00
ATOM 2 C 1 -3.113 -0.447 -0.421 1.00 0.00
ATOM 3 C 1 -1.896 0.386 -0.007 1.00 0.00
ATOM 4 C 1 -0.611 -0.426 -0.198 1.00 0.00
ATOM 5 C 1 0.608 0.405 0.216 1.00 0.00
ATOM 6 C 1 1.892 -0.400 0.001 1.00 0.00
ATOM 7 C 1 3.113 0.429 0.414 1.00 0.00
ATOM 8 C 1 4.397 -0.374 0.199 1.00 0.00

We can obtain more functionality if we replace $1 in the script with $@ which allows us to pass multiple files
into the function.

8

It may be useful to know that you can debug bash scripts by executing them with the option -x.

Finding Things

In this section we will show how you might search for files using the UNIX shell, and search for information
within files. The main function we will be using is grep which stands for global/regular expression/print.
Let’s look at a simple example.
cd writing
cat haiku.txt

The Tao that is seen
Is not the true Tao, until
You bring fresh toner.
##
With searching comes loss
and the presence of absence:
"My Thesis" not found.
##
Yesterday it worked
Today it is not working
Software is like that.

grep allows us to search for and print lines in files which match a given pattern. Let’s extract a couple of
lines from the file haiku.txt using grep.
cd writing

search for any sentences containing searching
grep searching haiku.txt

With searching comes loss

cd writing

search for any sentences containing it
grep it haiku.txt

With searching comes loss
Yesterday it worked
Today it is not working

When searching for “it”, grep also extracted lines which included words with “it” in them such as “with”. If
we only want to search for sentences with the word “it”, we can use the option -w.
cd writing

search for any sentences containing it
grep -w it haiku.txt

Yesterday it worked
Today it is not working

We can expand this further and search for specific phrases using quotation marks.
cd writing

9

search for any sentences containing it
grep -w "it worked" haiku.txt

Yesterday it worked

grep offers many other options which can be seen using grep --help. These include -n which numbers the
lines which match, -i which makes our search case-insensitive, and -v which inverts the search (i.e. we find
all lines which do not contain a phrase).

Let’s look for files using find. We begin with find . which simply tells the shell to find everything in the
current directory.
cd writing
find .

.
./tools
./tools/old
./tools/old/oldtool
./tools/format
./tools/stats
./data
./data/one.txt
./data/two.txt
./data/LittleWomen.txt
./thesis
./thesis/empty-draft.md
./haiku.txt

We can specify the type of thing we are looking for using -type. For example, let’s look for all subdirectories.
Similarly, we could use -type f to find all files within the subdirectory.
cd writing
find . -type d

.
./tools
./tools/old
./data
./thesis

You may wonder how to combine filters such as wc with files selected using find and grep. The most obvious
approach of using filters does not work as you may expect, as demonstrated below.
cd molecules
find . -name "*.pdb" | wc -l

6

This is because wc is counting the number of files found. Instead we must provide the file names to wc as
arguments. One way to do this is as follows
cd molecules
wc -l $(find . -name "*.pdb")

21 ./pentane.pdb
12 ./ethane.pdb
15 ./propane.pdb
20 ./cubane.pdb
30 ./octane.pdb

10

9 ./methane.pdb
107 total

An alternative approach might be to use a for loop.
cd molecules
for filename in $(find . -name "*.pdb")
do

wc -l $filename
done

21 ./pentane.pdb
12 ./ethane.pdb
15 ./propane.pdb
20 ./cubane.pdb
30 ./octane.pdb
9 ./methane.pdb

In both cases above we have used $(). This ensures that the shell runs the code in the $() first.

11

	The Unix Shell
	Pipes and Filters
	Loops
	Shell Scripts

	Finding Things

